Atopic dermatitis (AD) is a chronic pruritic skin disorder affecting many people especially young children. It is a disease caused by the combination of genetic predisposition, immune dysregulation, and skin barrier defect. In recent years, emerging evidence suggests oxidative stress may play an important role in many skin diseases and skin aging, possibly including AD. In this review, we give an update on scientific progress linking oxidative stress to AD and discuss future treatment strategies for better disease control and improved quality of life for AD patients.
Background
The Keap1-Nrf2 signaling pathway regulates host cell defense responses against oxidative stress and maintains the cellular redox balance. Aims&Methods: We investigated the function/molecular mechanisms by which Keap1-Nrf2 complex may influence liver ischemia/reperfusion injury (IRI) in a mouse model of hepatic cold storage (20h at 4 C) followed by orthotopic liver transplantation (OLT).
Results
The Keap1 hepatocyte-specific knock-out (HKO) in the donor liver ameliorated post-transplant IRI, evidenced by improved hepatocellular function and OLT outcomes (Keap1HKO Keap1HKO; 100% survival), as compared with controls (WT WT; 50% survival; p<0.01). In contrast, donor liver Nrf2 deficiency exacerbated IRI in transplant recipients (Nrf2KO Nrf2KO; 40% survival). Ablation of Keap1 signaling reduced macrophage/neutrophil trafficking, pro-inflammatory cytokine programs, and hepatocellular necrosis/apoptosis, while simultaneously promoting anti-apoptotic functions in OLTs. At the molecular level, Keap1HKO increased Nrf2 levels, stimulated Akt phosphorylation, and enhanced expression of anti-oxidant Trx1, HIF-1 , and HO-1. Pretreatment of liver donors with PI3K inhibitor (LY294002) disrupted Akt/HIF-1 signaling and recreated hepatocellular damage in otherwise IR-resistant Keap1HKO transplants. In parallel in vitro studies, hydrogen peroxide-stressed Keap1-deficient hepatocytes were characterized by enhanced expression of Nrf2, Trx1, and Akt phosphorylation, in association with decreased release of lactate dehydrogenase (LDH) in cell culture supernatants.
Conclusions
Keap1-Nrf2 complex prevents oxidative injury in IR-stressed OLTs through Keap1 signaling, which negatively regulates Nrf2 pathway. Activation of Nrf2 induces Trx1 and promotes PI3K/Akt, crucial for HIF-1 activity. HIF-1 -mediated overexpression of HO-1/CyclinD1 facilitates cytoprotection by limiting hepatic inflammatory responses, and hepatocellular necrosis/apoptosis in PI3K-dependent manner.
DNA vaccination is an attractive approach for tumor immunotherapy because of its stability and simplicity of delivery. Advances demonstrate that helper T cell responses play a critical role in initiating immune responses. The aim of the current study is to test whether targeting HPV-16 E7 to the endosomal/lysosomal compartment can enhance the potency of DNA vaccines. We linked the lysosome-associated membrane protein 1 (LAMP-1) to HPV-E7 to construct a chimeric DNA, Sig/E7/LAMP-1 DNA. For in vivo tumor prevention experiments, mice were vaccinated with E7 DNA or Sig/E7/LAMP-1 DNA via gene gun, followed by tumor challenge. For in vivo tumor regression experiments, mice were first challenged with tumor cells and then vaccinated with E7-DNA or Sig/E7/LAMP-1 DNA. Intracellular cytokine staining with flow cytometry analysis, cytotoxic T lymphocyte (CTL) assays, enzyme-linked immunoabsorbent assay (ELISA), and enzyme-linked immunospot (ELISPOT) assays were used for in vitro E7-specific immunological studies. In both tumor prevention and tumor regression assays, Sig/E7/LAMP-1 DNA generated greater antitumor immunity than did wild-type E7 DNA. In addition, mice vaccinated with Sig/E7/LAMP-1 DNA had greater numbers of E7-specific CD4+ helper T cells, higher E7-specific CTL activity, and greater numbers of CD8+ T cell precursors than did mice vaccinated with Sig/E7 or wild-type E7 DNA. Sig/E7 generated a stronger E7-specific antibody response than did Sig/E7/LAMP-1 or wild-type E7 DNA. Our results indicate that linkage of the antigen gene to an endosomal/lysosomal targeting signal may greatly enhance the potency of DNA vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.