Since the ability to control the investor’s income or loss within a certain range, barrier option has been among the most popular path-dependent options where its payoff depends on whether or not the underlying asset’s price reaches a given “barrier”. First, assuming the underlying asset as an uncertain variable for the case that the Caputo fractional-order derivative is adopted instead of the ordinary derivative, the real financial market is better modeled by the uncertain fractional-order differential equation with Caputo type. Then, a first-hitting time model which can measure the exercise ability is innovatively presented. Second, based on the first-hitting time theorem of the uncertain fractional-order differential equation, the reliability index (including validity and survival index) for the proposed model is obtained, and four types of European barrier option (including up-and-in call, down-and-in put, up-and-out put, and down-and-out call options) pricing formulas are obtained accordingly. Lastly, applying the predictor–corrector method, numerical algorithms are provided for calculating European barrier and the reliability index, numerical experiments and corresponding sensitivity analysis are also illustrated concerning various conditions.
First hitting criteria of a system are to initially achieve some performance indeces of the target state set. This paper primarily investigates the optimal control problem of the uncertain second-order circuit based on first hitting criteria. First, considering time efficiency and different from the ordinary expected utility criterion over an infinite time horizon, two first hitting criteria which are reliability index and reliable time criteria are innovatively proposed. Second, assuming the circuit output voltage as an uncertain variable when the historical data is lacking, we better model the real circuit system with the uncertain second-order differential equation which is essentially the uncertain fractional-order differential equation. Then, based on the first hitting time theorem of the uncertain fractional-order differential equation, the distribution function of the first hitting time under the second-order circuit system is proposed and the uncertain second-order circuit optimal control model (reliability index and reliable time-based model) is transformed into corresponding crisp optimal problem. Lastly, analytic expressions of the optimal control for the reliability index model are obtained. Meanwhile, sufficient condition and guidance for parameters for the optimal solution of the reliable time-based model are derived, and corresponding numerical examples are also given to demonstrate the fluctuation of our optimal solution for different parameters.
As an economic lever in financial market, interest rate option is not only the function of facilitating the bank to adjust the market fund supply and demand relation indirectly, but also provides the guarantee for investors to choose whether to exercise the right at the maturity date, thereby locking in the interest rate risk. This paper mainly studies the price of the interest rate ceiling as well as floor under the uncertain environment. Firstly, from the perspective of expert reliability, rather than relying on a large amount of historical financial data, to consider interest rate trends, and further assume that the dynamic change of the interest rate conforms to the uncertain process. Secondly, since uncertain fractional-order differential equations (UFDEs) have non-locality features to reflect memory and hereditary characteristics for the asset price changes, thus is more suitable to model the real financial market. We construct the mean-reverting interest rate model based on the UFDE in Caputo type. Then, the pricing formula of the interest rate ceiling and floor are provided separately. Finally, corresponding numerical examples and algorithms are given by using the predictor-corrector method, which support the validity of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.