Water-based antimicrobial agents, used in environmentally friendly applications, are widely used in wood protection industries. Furthermore, nanomaterials as antimicrobial agents, because of their biocidal component, huge specific surface area, and unique nanoscale effect, have attracted attention in the field of biodurability. We employed aqueous dispersed nano-silver with a diameter of 10 nm~20 nm to treat poplar wood and evaluated its leaching resistance and anti-mold effect on the wood surface. The results revealed that the higher the retention of the nano-silver, the stronger the protection efficiency of the wood surface against three molds (Aspergillus niger V. Tiegh, Penicillium citrinum Thom, and Trichoderma viride Pers. ex Fr); and the leachability of the nano-silver presented a slowly growing trend with the increase in the retention. When the wood surface attained a silver retention of 0.324 g·m−2, its anti-mold efficiency against Aspergillus niger V. Tiegh, Penicillium citrinum Thom, and Trichoderma viride Pers. ex Fr reached 80, 75, and 80%, respectively, which achieved or even exceeded the required standard value of effective mold inhibition (75%). Notably, the nano-silver leaching rate at this retention attained merely 4.75 %. The nanoparticle, well distributed on a wood surface, may promote sufficient contact with fungi as well as strong interaction with wood cell wall components, which probably contributed to the effective anti-mold efficiency and the leaching resistance. This study provided positive evidence for the anti-mold effect of nano-silver on wood surface.
The mold infection of wood reduces the quality of its surface and potentially endangers human health. One category of the most popular mold inhibitors on the market is water-soluble fungicides. However, easy leaching due to ionic forms is a problem, which reduces the effectiveness of their antimicrobial action, as well as causing environmental pollution. Interestingly, nanometer-sized sterilizing agents present strong permeability and highly fungicidal behavior, and they are not easily leached, due to the unique nanoscale effect, and they have become alternative candidates as marketable anti-mold agents for wood protection. In this study, we first designed and explored a nanoscale alloy (nano silver–copper alloy, nano-AgCu) to treat wood surfaces for mold growth resistance. The results showed that three molds, i.e., Aspergillus niger, Penicillium citrinum and Trichoderma viride, mainly grew on the surface of wood within a depth of 100 μm; and that the nano-AgCu alloy with a particle size of ~15 nm presented improved retention and anti-mold efficiency at a nanomaterial concentration on the wood surface. Its leaching rate increased non-linearly with the increase in nano-AgCu retention and then it showed a gradually decreasing trend. When the concentration reached 1000 mg/L, the nano-AgCu alloy uniformly distributed on the wood surface in a monodispersed state and exhibited a lower retention of 0.342 g/m2, with an anti-mold efficiency of more than 75% and a leaching rate of only 7.678%. Such results positioned 1000 mg/L as the toxic threshold concentration of nano-AgCu against the three molds. This study can provide a scientific basis for the analysis of the anti-mold mechanisms of nano-AgCu alloy on wood surfaces and guide the application of nano-metal alloy materials in the field of wood antimicrobials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.