Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways.
Large conductance calcium-activated potassium (BK) channels participate in many important physiological functions in excitable tissues such as neurons, cardiac and smooth muscles, whereas the knowledge of BK channels in bone tissues and osteoblasts remains elusive. To investigate the role of BK channels in osteoblasts, we used transcription activator-like effector nuclease (TALEN) to establish a BK knockout cell line on rat ROS17/2.8 osteoblast, and detected the proliferation and mineralization of the BK-knockout cells. Our study found that the BK-knockout cells significantly decreased the ability of proliferation and mineralization as osteoblasts, compared to the wild type cells. The overall expression of osteoblast differentiation marker genes in the BK-knockout cells was significantly lower than that in wild type osteoblast cells. The BK-knockout osteoblast cell line in our study displays a phenotype decrease in osteoblast function which can mimic the pathological state of osteoblast and thus provide a working cell line as a tool for study of osteoblast function and bone related diseases.
Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca2+, possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus.
Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.
Impaired bone formation is one of the major causes of low bone mass and skeletal fragility that occurs in osteoporosis. However, the mechanisms underlying the defects in bone formation are not well understood. Here, we report that big conductance calcium-activated potassium channels (BKs) are required for bone formation and osteoblast function both in vivo and in vitro. By 15 weeks of age, BK knockout (BKO) mice exhibited a decline in bone mineral density and trabecular bone volume of the tibiae and lumbar vertebrae, which were associated with impaired bone formation and osteoblast activity. Mechanistically, BK ablation in bone and bone marrow mesenchymal stem cells (BMSCs) of BKO mice inhibited integrin signaling. Furthermore, the binding of α subunit of BK with integrin β1 protein in osteoblasts was confirmed, and FAK-ERK1/2 signaling was proved to be involved by genetic modification of KCNMA1 (which encodes the α subunit of BK) in ROS17/2.8 osteoblast cells. These findings indicated that BK regulates bone formation by promoting osteoblast differentiation via integrin pathway, which provided novel insight into ion transporter crosstalk with the extracellular matrix in osteoblast regulation and revealed a new potential strategy for intervention in correcting bone formation defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.