This copy is for personal use only. To order printed copies, contact reprints@rsna.org I n P r e s s 2 Key Points 1. The positive rates of RT-PCR assay and chest CT imaging in our cohort were 59% (601/1014), and 88% (888/1014) for the diagnosis of suspected patients with COVID-19, respectively. 2.With RT-PCR as a reference, the sensitivity of chest CT imaging for COVID-19 was 97% (580/601). In patients with negative RT-PCR results but positive chest CT scans (n=308 patients), 48% (147/308) of patients were re-considered as highly likely cases, with 33% (103/308) as probable cases by a comprehensive evaluation. 3.With analysis of serial RT-PCR assays and CT scans, 60% to 93% of patients had initial positive chest CT consistent with COVID-19 before the initial positive RT-PCR results. 42% of patients showed improvement of follow-up chest CT scans before the RT-PCR results turning negative. Summary StatementChest CT had higher sensitivity for diagnosis of COVID-19 as compared with initial reverse-transcription polymerase chain reaction (RT-PCR) from swab samples in the epidemic area of China. Abbreviations RT-PCR = reverse transcription polymerase chain reaction NCP = novel coronavirus pneumonia PPV = positive predictive value NPV = negative predictive value I n P r e s s 3 Abstract Background: Chest CT is used for diagnosis of 2019 novel coronavirus disease (COVID-19), as an important complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. Purpose: To investigate the diagnostic value and consistency of chest CT as compared with comparison to RT-PCR assay in COVID-19. underwent both chest CT and RT-PCR tests were included. With RT-PCR as reference standard, the performance of chest CT in diagnosing COVID-19 was assessed. Besides, for patients with multiple RT-PCR assays, the dynamic conversion of RT-PCR results (negative to positive, positive to negative, respectively) was analyzed as compared with serial chest CT scans for those with time-interval of 4 days or more. Results: Of 1014 patients, 59% (601/1014) had positive RT-PCR results, and 88% (888/1014) had positive chest CT scans. The sensitivity of chest CT in suggesting COVID-19 was 97% (95%CI, 95-98%, 580/601 patients) based on positive RT-PCRresults. In patients with negative RT-PCR results, 75% (308/413) had positive chest CT findings; of 308, 48% were considered as highly likely cases, with 33% as probable cases. By analysis of serial RT-PCR assays and CT scans, the mean interval time between the initial negative to positive RT-PCR results was 5.1 ± 1.5 days; the initial positive to subsequent negative RT-PCR result was 6.9 ± 2.3 days). 60% to 93% of cases had initial positive CT consistent with COVID-19 prior (or parallel) to the initial positive RT-PCR results. 42% (24/57) cases showed improvement in follow-up chest CT scans before the RT-PCR results turning negative. Conclusion:Chest CT has a high sensitivity for diagnosis of COVID-19. Chest CT may be considered as a primary tool for the current COVID-19 detection in epidemic ar...
Objectives. This study aimed to determine the IgM and IgG responses against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 in coronavirus disease 2019 (COVID-19) patients with varying illness severities. Methods. IgM and IgG antibody levels were assessed via chemiluminescence immunoassay in 338 COVID-19 patients. Results. IgM levels increased during the first week after SARS-CoV-2 infection, peaked 2 weeks and then reduced to near-background levels in most patients. IgG was detectable after 1 week and was maintained at a high level for a long period. The positive rates of IgM and/or IgG antibody detections were not significantly different among the mild, severe and critical disease groups. Severe and critical cases had higher IgM levels than mild cases, whereas the IgG level in critical cases was lower than those in both mild and severe cases. This might be because of the high disease activity and/or a compromised immune response in critical cases. The IgM antibody levels were slightly higher in deceased patients than recovered patients, but IgG levels in these groups did not significantly differ. A longitudinal detection of antibodies revealed that IgM levels decreased rapidly in recovered patients, whereas in deceased cases, either IgM levels remained high or both IgM and IgG were undetectable during the disease course. Conclusion. Quantitative detection of IgM and IgG antibodies against SARS-CoV-2 quantitatively has potential significance for evaluating the severity and prognosis of COVID-19.
Research question Whether SARS-CoV-2 infection has effects on ovarian reserve, sex hormone and menstruation of women of child-bearing age. Design This is a retrospective, cross-sectional study. Clinical and laboratory data from 237 women of child-bearing age diagnosed with COVID-19 were retrospectively reviewed. Menstrual data from 177 patients were analyzed. Blood samples from the early follicular phase were tested for sex hormones and Anti-mullerian hormone (AMH). Results Among 237 patients confirmed with COVID-19, severely ill patients had more comorbidities than mildly ill patients (34% vs 8%), especially for patients with diabetes, hepatic disease and malignant tumors. Among 177 patients with menstrual records, 45 (25%) patients presented with menstrual volume changes, and 50 (28%) patients had menstrual cycle changes, mainly a decreased volume (21%) and a prolonged cycle (19%). The average sex hormone and AMH levels of women of child-bearing age with COVID-19 were not different from those of age-matched controls. Conclusions Average sex hormone levels and ovarian reserve did not change significantly in COVID-19 women of child-bearing age. Nearly one-fifth of patients exhibited a menstrual volume decrease or cycle prolongation. The menstruation changes of these patients might be the consequence of transient sex hormone change cause by suppression of ovarian function that soon resumed after recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.