Monitoring aircraft structural health with changing loads is critical in aviation and aerospace engineering. However, the load equation needs to be calibrated by ground testing which is costly, and inefficient. Here, we report a general deep learning-based aircraft load model for strain prediction and load model calibration through a two-phase process. First, we identified the causality between key flight parameters and strains. The prediction equation was then integrated into the monitoring process to build a more general load model for load coefficients calibration. This model achieves a 97.16% prediction accuracy and 99.49% goodness-of-fit for a prototype system with 2 million collected flight recording data. This model reduces the effort of ground tests and provides more accurate load prediction with adapted aircraft parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.