Background/Aims: Irritable bowel syndrome (IBS), defined as recurrent abdominal pain and changes in bowel habits, seriously affects quality of life and ability to work. Ghrelin is a brain-gut hormone, which has been reported to show antinociceptive effects in peripheral pain. We investigated the effect of ghrelin on visceral hypersensitivity and pain in a rat model of IBS. Methods: Maternal deprivation (MD) was used to provide a stress-induced model of IBS in Wistar rats. Colorectal distension (CRD) was used to detect visceral sensitivity, which was evaluated by abdominal withdrawal reflex (AWR) scores. Rats that were confirmed to have visceral hypersensitivity after MD were injected with ghrelin (10 µg/kg) subcutaneously twice a week from weeks 7 to 8. [D-Lys3]-GHRP-6 (100 nmol/L) and naloxone (100 nmol/L) were administered subcutaneously to block growth hormone secretagogue receptor 1α (GHS-R1α) and opioid receptors, respectively. Expression of transient receptor potential vanilloid type 1 (TRPV1) and µ and κ opioid receptors (MOR and KOR) in colon, dorsal root ganglion (DRG) and cerebral cortex tissues were detected by western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemical analyses and immunofluorescence. Results: Ghrelin treatment increased expression of opioid receptors and inhibited expression of TRPV1 in colon, dorsal root ganglion (DRG) and cerebral cortex. The antinociceptive effect of ghrelin in the rat model of IBS was partly blocked by both the ghrelin antagonist [D-Lys3]-GHRP-6 and the opioid receptor antagonist naloxone. Conclusion: The results indicate that ghrelin exerted an antinociceptive effect, which was mediated via TRPV1/opioid systems, in IBS-induced visceral hypersensitivity. Ghrelin might potentially be used as a new treatment for IBS.
Aim
To examine the impact of the sodium‐glucose co‐transporter‐2 inhibitor, empagliflozin, on plasma and urine metabolites in participants with type 1 diabetes.
Material and Methods
Participants (n = 40, 50% male, mean age 24.3 years) with type 1 diabetes and without overt evidence of diabetic kidney disease had baseline assessments performed under clamped euglycaemia and hyperglycaemia, on two consecutive days. Participants then proceeded to an 8‐week, open‐label treatment period with empagliflozin 25 mg/day, followed by repeat assessments under clamped euglycaemia and hyperglycaemia. Plasma and urine metabolites were first grouped into metabolic pathways using MetaboAnalyst software. Principal component analysis was performed to create a representative value for each sufficiently represented metabolic group (false discovery rate ≤ 0.1) for further analysis.
Results
Of the plasma metabolite groups, tricarboxylic acid (TCA) cycle (P < .0001), biosynthesis of unsaturated fatty acids (P = .0045), butanoate (P < .0001), propanoate (P = .0053), and alanine, aspartate and glutamate (P < .0050) metabolites were increased after empagliflozin treatment under clamped euglycaemia. Of the urine metabolite groups, only butanoate metabolites (P = .0005) were significantly increased. Empagliflozin treatment also attenuated the increase in a number of urine metabolites observed with acute hyperglycaemia.
Conclusions
Empagliflozin was associated with increased lipid and TCA cycle metabolites in participants with type 1 diabetes, suggesting a shift in metabolic substrate use and improved mitochondrial function. These effects result in more efficient energy production and may contribute to end‐organ protection by alleviating local hypoxia and oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.