The evolution of microbial community and the fate of ARGs along different full-scale wastewater treatment processes (i.e., Anaerobic-Anoxic-Oxic, Oxidation Ditch, and Cyclic Activated Sludge System) were investigated in this study. We found that the sludges of bioreactors treating similar influent showed the similar microbial communities, independent of the treatment technologies. The horizontal gene transfer (HGT) mainly occurred in aeration tank rather that anaerobic/anoxic tank. More co-occurrence of potential pathogens and ARGs was found in wastewater than in sludge. Microbial biomass was the key driver for the fate of ARGs in wastewater, while mobile genetic elements (MGEs) was the key factor for the fate of ARGs in sludge. Combination of wastewater characteristics, microbial diversity, microbial biomass, and MGEs contributed to the variation of ARGs. Finally, it was found that enhanced nutrients removal process and tertiary treatment would benefit ARGs removal.
BackgroundIt is widely recognized that interspecific hybridization may induce "genome shock", and lead to genetic and epigenetic instabilities in the resultant hybrids and/or backcrossed introgressants. A prominent component involved in the genome shock is reactivation of cryptic transposable elements (TEs) in the hybrid genome, which is often associated with alteration in the elements' epigenetic modifications like cytosine DNA methylation. We have previously reported that introgressants derived from hybridization between Oryza sativa (rice) and Zizania latifolia manifested substantial methylation re-patterning and rampant mobilization of two TEs, a copia retrotransposon Tos17 and a MITE mPing. It was not known however whether other types of TEs had also been transpositionally reactivated in these introgressants, their relevance to alteration in cytosine methylation, and their impact on expression of adjacent cellular genes.ResultsWe document in this study that the Dart TE family was transpositionally reactivated followed by stabilization in all three studied introgressants (RZ1, RZ2 and RZ35) derived from introgressive hybridization between rice (cv. Matsumae) and Z. latifolia, while the TEs remained quiescent in the recipient rice genome. Transposon-display (TD) and sequencing verified the element's mobility and mapped the excisions and re-insertions to the rice chromosomes. Methylation-sensitive Southern blotting showed that the Dart TEs were heavily methylated along their entire length, and moderate alteration in cytosine methylation patterns occurred in the introgressants relative to their rice parental line. Real-time qRT-PCR quantification on the relative transcript abundance of six single-copy genes flanking the newly excised or inserted Dart-related TE copies indicated that whereas marked difference in the expression of all four genes in both tissues (leaf and root) were detected between the introgressants and their rice parental line under both normal and various stress conditions, the difference showed little association with the presence or absence of the newly mobilized Dart-related TEs.ConclusionIntrogressive hybridization has induced transpositional reactivation of the otherwise immobile Dart-related TEs in the parental rice line (cv. Matsumae), which was accompanied with a moderate alteration in the element's cytosine methylation. Significant difference in expression of the Dart-adjacent genes occurred between the introgressants and their rice parental line under both normal and various abiotic stress conditions, but the alteration in gene expression was not coupled with the TEs.
The diploid D-genome lineage of the Triticum/Aegilops complex has an evolutionary history involving genomic contributions from ancient A- and B/S-genome species. We explored here the possible cytonuclear evolutionary responses to this history of hybridization. Phylogenetic analysis of chloroplast DNAs indicates that the D-genome lineage has a maternal origin of the A-genome or some other closely allied lineage. Analyses of the nuclear genome in the D-genome species Aegilops tauschii indicate that accompanying and/or following this ancient hybridization, there has been biased maintenance of maternal A-genome ancestry in nuclear genes encoding cytonuclear enzyme complexes (CECs). Our study provides insights into mechanisms of cytonuclear coevolution accompanying the evolution and eventual stabilization of homoploid hybrid species. We suggest that this coevolutionary process includes likely rapid fixation of A-genome CEC orthologs as well as biased retention of A-genome nucleotides in CEC homologs following population level recombination during the initial generations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.