Signal denoising is one of the most important issues in signal processing, and various techniques have been proposed to address this issue. A combined method involving wavelet decomposition and multiscale principal component analysis (MSPCA) has been proposed and exhibits a strong signal denoising performance. This technique takes advantage of several signals that have similar noises to conduct denoising; however, noises are usually quite different between signals, and wavelet decomposition has limited adaptive decomposition abilities for complex signals. To address this issue, we propose a signal denoising method based on ensemble empirical mode decomposition (EEMD) and MSPCA. The proposed method can conduct MSPCA-based denoising for a single signal compared with the former MSPCA-based denoising methods. The main steps of the proposed denoising method are as follows: First, EEMD is used for adaptive decomposition of a signal, and the variance contribution rate is selected to remove components with high-frequency noises. Subsequently, the Hankel matrix is constructed on each component to obtain a higher order matrix, and the main score and load vectors of the PCA are adopted to denoise the Hankel matrix. Next, the PCA-denoised component is denoised using soft thresholding. Finally, the stacking of PCA- and soft thresholding-denoised components is treated as the final denoised signal. Synthetic tests demonstrate that the EEMD-MSPCA-based method can provide good signal denoising results and is superior to the low-pass filter, wavelet reconstruction, EEMD reconstruction, Hankel–SVD, EEMD-Hankel–SVD, and wavelet-MSPCA-based denoising methods. Moreover, the proposed method in combination with the AIC picking method shows good prospects for processing microseismic waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.