Background Body mass index (BMI) has been found to be associated with a decreased risk of non-small cell lung cancer (NSCLC); however, the effect of BMI trajectories and potential interactions with genetic variants on NSCLC risk remain unknown. Methods Cox proportional hazards regression model was applied to assess the association between BMI trajectory and NSCLC risk in a cohort of 138,110 participants from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. One-sample Mendelian randomization (MR) analysis was further used to access the causality between BMI trajectories and NSCLC risk. Additionally, polygenic risk score (PRS) and genome-wide interaction analysis (GWIA) were used to evaluate the multiplicative interaction between BMI trajectories and genetic variants in NSCLC risk. Results Compared with individuals maintaining a stable normal BMI (n = 47,982, 34.74%), BMI trajectories from normal to overweight (n = 64,498, 46.70%), from normal to obese (n = 21,259, 15.39%), and from overweight to obese (n = 4,371, 3.16%) were associated with a decreased risk of NSCLC (hazard ratio [HR] for trend = 0.78, P < 2×10−16). An MR study using BMI trajectory associated with genetic variants revealed no significant association between BMI trajectories and NSCLC risk. Further analysis of PRS showed that a higher GWAS-identified PRS (PRSGWAS) was associated with an increased risk of NSCLC, while the interaction between BMI trajectories and PRSGWAS with the NSCLC risk was not significant (PsPRS= 0.863 and PwPRS= 0.704). In GWIA analysis, four independent susceptibility loci (P < 1×10−6) were found to be associated with BMI trajectories on NSCLC risk, including rs79297227 (12q14.1, located in SLC16A7, Pinteraction = 1.01×10−7), rs2336652 (3p22.3, near CLASP2, Pinteraction = 3.92×10−7), rs16018 (19p13.2, in CACNA1A, Pinteraction = 3.92×10−7), and rs4726760 (7q34, near BRAF, Pinteraction = 9.19×10−7). Functional annotation demonstrated that these loci may be involved in the development of NSCLC by regulating cell growth, differentiation, and inflammation. Conclusions Our study has shown an association between BMI trajectories, genetic factors, and NSCLC risk. Interestingly, four novel genetic loci were identified to interact with BMI trajectories on NSCLC risk, providing more support for the aetiology research of NSCLC. Trial registration http://www.clinicaltrials.gov, NCT01696968.
(1) Background: The association between metabolic obesity phenotypes and incident lung cancer (LC) remains unclear. (2) Methods: Based on the combination of baseline BMI categories and metabolic health status, participants were categorized into eight groups: metabolically healthy underweight (MHUW), metabolically unhealthy underweight (MUUW), metabolically healthy normal (MHN), metabolically unhealthy normal (MUN), metabolically healthy overweight (MHOW), metabolically unhealthy overweight (MUOW), metabolically healthy obesity (MHO), and metabolically unhealthy obesity (MUO). The Cox proportional hazards model and Mendelian randomization (MR) were applied to assess the association between metabolic obesity phenotypes with LC risk. (3) Results: During a median follow-up of 9.1 years, 3654 incident LC patients were confirmed among 450,482 individuals. Compared with participants with MHN, those with MUUW had higher rates of incident LC (hazard ratio (HR) = 3.24, 95% confidence interval (CI) = 1.33–7.87, p = 0.009). MHO and MHOW individuals had a 24% and 18% lower risk of developing LC, respectively (MHO: HR = 0.76, 95% CI = 0.61–0.95, p = 0.02; MHO: HR = 0.82, 95% CI = 0.70–0.96, p = 0.02). No genetic association of metabolic obesity phenotypes and LC risk was observed in MR analysis. (4) Conclusions: In this prospective cohort study, individuals with MHOW and MHO phenotypes were at a lower risk and MUUW were at a higher risk of LC. However, MR failed to reveal any evidence that metabolic obesity phenotypes would be associated with a higher risk of LC.
Intestinal barrier injury and hyperglycemia are common in patients with sepsis. Bacteria translocation and systemic inflammatory response caused by intestinal barrier injury play a significant role in sepsis occurrence and deterioration, while hyperglycemia is linked to adverse outcomes in sepsis. Previous studies have shown that hyperglycemia is an independent risk factor for intestinal barrier injury. Concurrently, increasing evidence has indicated that some anti-hyperglycemic agents not only improve intestinal barrier function but are also beneficial in managing sepsis-induced organ dysfunction. Therefore, we assume that these agents can block or reduce the severity of sepsis by improving intestinal barrier function. Accordingly, we explicated the connection between sepsis, intestinal barrier, and hyperglycemia, overviewed the evidence on improving intestinal barrier function and alleviating sepsis-induced organ dysfunction by anti-hyperglycemic agents (eg, metformin, peroxisome proliferators activated receptor-γ agonists, berberine, and curcumin), and summarized some common characteristics of these agents to provide a new perspective in the adjuvant treatment of sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.