Alterations in the gut microbiota may influence gastrointestinal (GI) dysbiosis frequently reported in individuals with autism spectrum disorder (ASD). In this study, we sequenced the bacterial 16S rRNA gene to evaluate changes in fecal microbiota between 48 children with ASD and 48 healthy children in China. At the phylum level, the number of Firmicutes, Proteobacteria, and Verrucomicrobia decreased in children with ASD, while the Bacteroidetes/Firmicutes was significantly higher in autistic children due to enrichment of Bacteroidetes. At the genus level, the amount of Bacteroides, Prevotella, Lachnospiracea_incertae_sedis, and Megamonas increased, while Clostridium XlVa, Eisenbergiella, Clostridium IV, Flavonifractor, Escherichia/Shigella, Haemophilus, Akkermansia, and Dialister decreased in children with ASD relative to the controls. Significant increase was observed in the number of species synthesizing branched‐chain amino acids (BCAAs), like Bacteroides vulgatus and Prevotella copri, while the numbers of Bacteroides fragilis and Akkermansia muciniphila decreased in children with ASD compared to the controls. Most importantly, the highest levels of pathogenic bacteria were different for each child with ASD in this cohort. We found that only one functional module, cellular antigens, was enriched in children with ASD, and other pathways like lysine degradation and tryptophan metabolism were significantly decreased in children with ASD. These findings provide further evidence of altered gut microbiota in Chinese ASD children and may contribute to the treatment of patients with ASD. Lay Summary This study characterized the gut bacteria composition of 48 children with ASD and 48 neurotypical children in China. The metabolic disruptions caused by altered gut microbiota may contribute significantly to the neurological pathophysiology of ASD, including significant increases in the number of species synthesizing BCAAs, and decreases in the number of probiotic species. These findings suggest that a gut microbiome‐associated therapeutic intervention may provide a novel strategy for treating GI symptoms frequently seen in individuals with ASD. Autism Res 2020, 13: 1614–1625. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi5Ti3FeO15 with high ferroelectric Curie temperature of ~1000 K. Bi5Ti3FeO15 thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi5Ti3FeO15 with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.