Most bamboo species including Moso bamboo (Phyllostachys edulis) are tropical or subtropical plants that greatly contribute to human well-being. Low temperature is one of the main environmental factors restricting bamboo growth and geographic distribution. Our knowledge of the molecular changes during bamboo adaption to cold stress remains limited. Here, we provided a general overview of the cold-responsive transcriptional profiles in Moso bamboo by systematically analyzing its transcriptomic response under cold stress. Our results showed that low temperature induced strong morphological and biochemical alternations in Moso bamboo. To examine the global gene expression changes in response to cold, 12 libraries (non-treated, cold-treated 0.5, 1 and 24 h at −2 °C) were sequenced using an Illumina sequencing platform. Only a few differentially expressed genes (DEGs) were identified at early stage, while a large number of DEGs were identified at late stage in this study, suggesting that the majority of cold response genes in bamboo are late-responsive genes. A total of 222 transcription factors from 24 different families were differentially expressed during 24-h cold treatment, and the expressions of several well-known C-repeat/dehydration responsive element-binding factor negative regulators were significantly upregulated in response to cold, indicating the existence of special cold response networks. Our data also revealed that the expression of genes related to cell wall and the biosynthesis of fatty acids were altered in response to cold stress, indicating their potential roles in the acquisition of bamboo cold tolerance. In summary, our studies showed that both plant kingdom-conserved and species-specific cold response pathways exist in Moso bamboo, which lays the foundation for studying the regulatory mechanisms underlying bamboo cold stress response and provides useful gene resources for the construction of cold-tolerant bamboo through genetic engineering in the future.
The stress field is a critical factor for fracture propagation in hydraulic fracturing. Attention should be paid to fracture propagation with the nonuniform stress field. A stress field with gradient was established to investigate the influence of the nononuniform stress on fracture propagation. Based on the three‐dimensional block distinct element model the fracture propagation law with nononuniform stress was obtained. The mechanism of stress gradient and magnitude of uneven fracture propagation was revealed. Aiming at the uneven propagation, the influence of elastic modulus and construction parameters was analyzed. The results show that the influence of the elastic modulus follows the χ2 distribution equation and the influence of construction parameters can be expressed by the product of the injection rate and fluid viscosity. This conclusion is of theoretical significance for fracturing with nonuniform in situ stress.
Current and future editing reagent delivery systems for plant genome editing SCIENCE CHINA Life Sciences 60, 490 (2017); Genome editing technology and application in soybean improvement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.