Learning informative representations of users and items from the interaction data is of crucial importance to collaborative filtering (CF). Present embedding functions exploit user-item relationships to enrich the representations, evolving from a single user-item instance to the holistic interaction graph. Nevertheless, they largely model the relationships in a uniform manner, while neglecting the diversity of user intents on adopting the items, which could be to pass time, for interest, or shopping for others like families. Such uniform approach to model user interests easily results in suboptimal representations, failing to model diverse relationships and disentangle user intents in representations. In this work, we pay special attention to user-item relationships at the finer granularity of user intents. We hence devise a new model, Disentangled Graph Collaborative Filtering (DGCF), to disentangle these factors and yield disentangled representations. Specifically, by modeling a distribution over intents for each user-item interaction, we iteratively refine the intent-aware interaction graphs and representations. Meanwhile, we encourage independence of different intents. This leads to disentangled representations, effectively distilling information pertinent to each intent. We conduct extensive experiments on three benchmark datasets, and DGCF achieves significant improvements over several state-of-the-art models like NGCF [40], DisenGCN [25], and MacridVAE [26]. Further analyses offer insights into the advantages of DGCF on the disentanglement of user intents and interpretability of representations. Our codes are available in https://github.com/ xiangwang1223/disentangled_graph_collaborative_filtering. CCS CONCEPTS • Information systems → Recommender systems.
Fairness in machine learning has attracted increasing attention in recent years. The fairness methods improving algorithmic fairness for in-distribution data may not perform well under distribution shift. In this paper, we first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and weight perturbation. Subsequently, we analyze the sufficient conditions to guarantee fairness (i.e., low demographic parity) for the target dataset, including fairness for the source dataset, and low prediction difference between the source and target dataset for each sensitive attribute group. Motivated by these sufficient conditions, we propose robust fairness regularization (RFR) by considering the worst case within the weight perturbation ball for each sensitive attribute group. In this way, the maximization problem can be simplified as two forward and two backward propagations for each update of model parameters. We evaluate the effectiveness of our proposed RFR algorithm on synthetic and real distribution shifts across various datasets. Experimental results demonstrate that RFR achieves better fairness-accuracy trade-off performance compared with several baselines.
Demographic parity is the most widely recognized measure of group fairness in machine learning, which ensures equal treatment of different demographic groups. Numerous works aim to achieve demographic parity by pursuing the commonly used metric ∆DP 1 . Unfortunately, in this paper, we reveal that the fairness metric ∆DP can not precisely measure the violation of demographic parity, because it inherently has the following drawbacks: i) zero-value ∆DP does not guarantee zero violation of demographic parity, ii) ∆DP values can vary with different classification thresholds. To this end, we propose two new fairness metrics, Area Between Probability density function Curves (ABPC) and Area Between Cumulative density function Curves (ABCC), to precisely measure the violation of demographic parity in distribution level. The new fairness metrics directly measure the difference between the distributions of the prediction probability for different demographic groups. Thus our proposed new metrics enjoy: i) zero-value ABCC/ABPC guarantees zero violation of demographic parity; ii) ABCC/ABPC guarantees demographic parity while the classification threshold adjusted. We further re-evaluate the existing fair models with our proposed fairness metrics and observe different fairness behaviors of those models under the new metrics. The code is anonymously available at https://anonymous.4open.science/r/ fairness_metric-36EC. * Equal contribution. 1 ∆DP includes ∆DP b and ∆DPc in this paper, the details are presented in Section 2.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.