The link between serum uric acid (SUA) and the risk of venous thromboembolism (VTE) is well established. Recent data suggested a causative role of UA in endothelial cells (ECs) dysfunction. However, the molecular mechanism of high UA on thrombogenesis is unknown. We investigate whether high UA induce phosphatidylserine (PS) externalization and microparticle (MP) shedding in cultured EC, and contribute to UA‐induced hypercoagulable state. In the present study, we demonstrate that UA induces PS exposure and EMP release of EC in a concentration‐ and time‐dependent manner, which enhances the procoagulant activity (PCA) of EC and inhibited over 90% by lactadherin in vitro. Furthermore, hyperuricemic rat model was used to evaluate the development of thrombi following by flow stasis in the inferior vena cava (IVC). Hyperuricemia group is more likely to form large and hard thrombi compared with control. Importantly, we found that TMEM16F expression is significantly upregulated in UA‐treated EC, which is crucial for UA‐induced PS exposure and MP formation. Additionally, UA increases the generation of reactive oxygen species (ROS), lipid peroxidation, and cytosolic Ca2+ concentration in EC, which might contribute to increased TMEM16F expression. Using confocal microscopy, we also observed disruption of the actin cytoskeleton, suggesting that depolymerization of actin filaments might be required for TMEM16F activation and followed by PS exposure and membrane blebbing in UA‐treated EC. Our results demonstrate a thrombotic role of EC in hyperuricemia through TMEM16F‐mediated PS exposure and MPs release.
Background Essential thrombocythemia (ET) is characterized by thrombocytosis with increased platelet number and persistent activation. The mechanisms of thrombosis and the fate of these platelets are not clear. The aim of the present study is to explore the phagocytosis of platelets of ET patients by endothelial cells (ECs) in vitro and its relevance to the procoagulant activity (PCA). Methods Phosphatidylserine (PS) exposure on platelets was detected by flow cytometry. Phagocytosis of the platelets by ECs was performed using flow cytometry, confocal microscopy, and electron microscopy. The PCA of platelets was evaluated by coagulation time and purified coagulation complex assays. Results The PS exposure on platelets in ET patients is higher than that in healthy controls. The PS‐exposed platelets are highly procoagulant and lactadherin reduced 80% of the PCA by blockade of PS. When cocultured, the platelets of ET patients were sequestered by ECs in a time‐dependent fashion. Lactadherin enhanced phagocytosis by bridging the PS on activated platelets and the integrin αvβ3 on ECs, and P‐selectin played at least a partial role in this process. Furthermore, factor Xa and prothrombinase activity of PS‐exposed platelets were decreased after incubation with ECs. Conclusion Our results suggest that phagocytic clearance of platelets by ECs occurs in ET patients, thus representing a novel mechanism to remove activated platelets from the circulation; lactadherin and phagocytosis could cooperatively limit the thrombophilia in ET patients.
Gene therapy may lead to a cure for hemophilia B (HB) if it is successful. Data from clinical trials using adeno-associated virus (AAV)–mediated liver-targeted FIX gene therapy are very encouraging. However, this protocol can be applied only to adults who do not have liver disease or anti-AAV antibodies, which occur in 30% to 50% of individuals. Thus, developing a protocol that can be applied to all HB patients is desired. Our previous studies have demonstrated that lentivirus-mediated platelet-specific FIX (2bF9) gene therapy can rescue bleeding diathesis and induce immune tolerance in FIXnull mice, but FIX expression was only ∼2% to 3% in whole blood. To improve the efficacy, we used a codon-optimized hyperfunctional FIX-Padua (2bCoF9R338L) to replace the 2bF9 cassette, resulting in 70% to 122% (35.08-60.77 mU/108 platelets) activity levels in 2bCoF9R338L-transduced FIXnull mice. Importantly, sustained hyperfunctional platelet-FIX expression was achieved in all 2bCoF9R338L-transduced highly immunized recipients with activity levels of 18.00 ± 9.11 and 9.36 ± 12.23 mU/108 platelets in the groups treated with 11 Gy and 6.6 Gy, respectively. The anti-FIX antibody titers declined with time, and immune tolerance was established after 2bCoF9R338L gene therapy. We found that incorporating the proteasome inhibitor bortezomib into preconditioning can help eliminate anti-FIX antibodies. The bleeding phenotype in 2bCoF9R338L-transduced recipients was completely rescued in a tail bleeding test and a needle-induced knee joint injury model once inhibitors dropped to undetectable. The hemostatic efficacy in 2bCoF9R338L-transduced recipients was further confirmed by ROTEM and thrombin generation assay (TGA). Together, our studies suggest that 2bCoF9R338L gene therapy can be a promising protocol for all HB patients, including patients with inhibitors.
Type 2N von Willebrand disease is caused by mutations in the factor VIII (FVIII) binding site of von Willibrand factor (VWF), resulting in dysfunctional VWF with defective binding capacity for FVIII. Here we developed a novel type 2N mouse model using CRISPR/Cas9 technology. In homozygous VWF2N/2N mice, plasma VWF levels were normal (1167±257 mU/ml) but the VWF was completely incapable of binding FVIII, resulting in 53±23 mU/ml of plasma FVIII levels that were similar to those in VWF deficient (VWF-/-) mice. When wild-type human or mouse VWF was infused into VWF2N/2N mice, endogenous plasma FVIII was restored, peaking at 4-6 hours post-infusion, demonstrating that FVIII expressed in VWF2N mice is viable, but short-lived unprotected in plasma due to dysfunctional 2N-VWF. The whole blood clotting time and thrombin generation were impaired in VWF2N/2N but not in VWF-/- mice. The bleeding time and blood loss in VWF2N/2N mice were similar to wild-type mice in the lateral tail vein or ventral artery injury model. However, VWF2N/2N, but not VWF-/- mice, lost a significant amount of blood during the primary bleeding phase after a tail tip amputation injury model, indicating that there are other alternative pathway(s) that can at least partially restore hemostasis when VWF is absent. In summary, we have developed a novel mouse model by gene editing with both the pathophysiology and clinical phenotype found in severe type 2N patients. This unique model can be used to investigate the biological properties of VWF/FVIII association in hemostasis and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.