DNA methylation and histone modification are important epigenetic marks that coregulate gene expression and genome stability. To identify factors involved in chromatin silencing, we carried out a forward genetic screen for mutants that release the silenced Pro-35S:LUCIFERASE (35SP-LUC) in Arabidopsis (Arabidopsis thaliana). We identified an epigenetic regulator, METHIONINE SYNTHASE1 (ATMS1), which catalyzes the synthesis of methionine (Met) in the one-carbon metabolism pathway. The ATMS1 mutation releases the silenced 35SP-LUC and the majority of endogenous genes and transposons. The effect of ATMS1 on chromatin silencing is related to decreased levels of DNA methylation (CG, CHG, and CHH) and histone-3 lysine-9 dimethylation. The ATMS1 mutation caused a significant decrease in the ratio of S-adenosylmethionine to S-adenosylhomocysteine. Exogenous application of Met rescued the phenotype of atms1-1. ATMS1 plays a predominant role in DNA and histone methylations among the three Met synthetase homologs. These results suggest that ATMS1 is required for DNA and histone methylations through its function in the one-carbon metabolism pathway, indicating the complex interplay between metabolism and epigenetic regulation.
Cellulose synthase-like D (CSLD) family was characterized for their expression and functions in Populus trichocarpa. Ten members, PtrCslD1-10, were identified in the P. trichocarpa genome, and they belong to 4 clades by phylogenetic tree analysis. qRT-PCR and promoter:GUS assays in Arabidopsis and P. trichocarpa displayed divergent expression patterns of these 10 PtrCSLD genes in root hairs, root tips, leaves, vascular tissues, xylem and flowers. Among PtrCslD2, PtrCslD4, PtrCslD5, PtrCslD6, and PtrCslD8 that all exhibited expression in root hairs, only PtrCslD5 could restore the root hairless phenotype of the atcsld3 mutant, demonstrating that PtrCslD5 is the functional ortholog of AtCslD3 for root hair formation. Our results suggest more possible functions for other PtrCslD genes in poplar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.