The result has showed an overall little significance for the efficacy of metronidazole combined probiotics over metronidazole alone for the treatment of BV. We need more further studies to provide enough evidence to confirm the benefits of probiotics in the treatment of BV.
Hox genes, by virtue of their key functions in axial patterning, have long been thought to be pivotal players in the evolution of developmental mechanisms. Despite their potential importance in evolution, there is little information about Hox genes in animal groups that are most closely related to ancestral Chordates. Accordingly, we have taken the step of analyzing Hox gene expression and function in the sea urchin embryo, whose simple bilateral body plan is thought to resemble that of a stem organism in the Chordate lineage. Here we describe the isolation, sequences analysis and spatiotemporal expression pattern of a sea urchin (Strongylocentrotus purpuratus) Abd-B-like gene, designated SpHbox7. We show that this gene is one of at least two Abd-B-like genes in the S. purpuratus genome, a result that argues against the simple hypothesis that Hox gene duplications occurred only during the evolution of the chordates. SpHbox7 transcripts are first detectable in midblastula stage embryos, increase in amount during gastrulation, decline slightly by the pluteus stage, and are not detectable in any tissue of the adult. Whole mount in situ hybridization and antibody staining with an SpHbox7-specific antibody reveal that both SpHbox7 mRNA and protein are present throughout the embryo in the blastula. Subsequently, they are localized in the invaginating archenteron, secondary mesenchyme, and oral ectoderm. By the pluteus larva stage, SpHbox7 protein and mRNA are present in the gut, larval arms, and portions of the oral ectoderm. This complex and dynamic expression pattern suggests that SpHbox7 has a role in the patterning of the gut, the mesoderm, and the oral surface.
Gross total or near total resection of skull base chondroblastomas through lateral skull base approaches results in long-term tumor control and low complication rates.
The patterning of the mesoderm of the sea urchin embryo is a classical paradigm of epithelial mesenchymal interactions in organogenesis, yet little is known of its molecular basis. Here we address the role of the homeobox gene, SpMsx, a member of the highly conserved Msx gene family, in this process. Msx genes have been shown to function in the dorsoventral patterning of the central nervous system in Drosophila and in a variety epithelial-mesenchymal interactions in vertebrates. We showed previously that the SpMsx gene is expressed during embryogenesis in a complex and dynamic pattern consistent with roles in the development of subpopulations of endoderm, mesoderm, and oral ectoderm. To perturb this pattern of expression and thus probe the function of SpMsx, we injected SpMsx mRNA into single-cell zygotes and monitored development morphologically and with a series of territory-specific molecular markers. RT-PCR analysis revealed that injected SpMsx transcripts persisted at least until the gastrula stage in amounts comparable to endogenous levels. Injected embryos exhibited deficiencies in the organization of primary and secondary mesenchyme cells within the blastocoelic cavity, as well as abnormalities in spicule number and shape. Defects in the endoderm were also common, including reduced or absent archenterons. Micromere transplantation experiments revealed that the defects in skeletogenic mesenchyme patterning were non-cell autonomous, consistent with findings that cell-cell interactions between ectoderm and the progenitors of the skeletogenic mesenchyme, the primary mesenchyme cells (PMCs), are important both for PMC guidance and spicule morphogenesis. Our data, taken together with observations in other organisms on the role of Msx genes in embryonic signaling processes, particularly involving the BMP pathway, suggest that SpMsx may be a part of the mechanism by which the ectoderm influences both the arrangement of primary mesenchyme cells within the blastocoel and the shapes of the skeletal rods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.