Nanoscale metal-organic frameworks (NMOFs) based on Gd3+ centers and benzenedicarboxylate and benzenetricarboxylate bridging ligands were synthesized using reverse microemulsions and characterized using SEM, PXRD, and TGA. These NMOFs exhibit extraordinarily large R1 and R2 relaxivities because of the presence of up to tens of millions of Gd3+ centers in each nanoparticle and are thus efficient T1 and T2 contrast agents for MRI. The NMOFs can also be made highly luminescent by doping with Eu3+ or Tb3+ centers. The results from this work suggest that NMOFs can be used as potential contrast agents for multimodal imaging.
Emerging evidence indicates that microRNAs (miRNAs) have important roles in regulating osteogenic differentiation and bone formation. Thus far, no study has established the pathophysiological role for miRNAs identified in human osteoporotic bone specimens. Here we found that elevated miR-214 levels correlated with a lower degree of bone formation in bone specimens from aged patients with fractures. We also found that osteoblast-specific manipulation of miR-214 levels by miR-214 antagomir treatment in miR-214 transgenic, ovariectomized, or hindlimb-unloaded mice revealed an inhibitory role of miR-214 in regulating bone formation. Further, in vitro osteoblast activity and matrix mineralization were promoted by antagomir-214 and decreased by agomir-214, and miR-214 directly targeted ATF4 to inhibit osteoblast activity. These data suggest that miR-214 has a crucial role in suppressing bone formation and that miR-214 inhibition in osteoblasts may be a potential anabolic strategy for ameliorating osteoporosis.
SummaryA quantitative estimate of cerebral blood oxygen saturation is of critical importance in the investigation of cerebrovascular disease because of the fact that it could potentially provide information on tissue viability in vivo. In the current study, a multi-echo gradient and spin echo magnetic resonance imaging sequence was used to acquire images from eight normal volunteer subjects. All images were acquired on a Siemens 1.5T Symphony whole-body scanner (Siemens, Erlangen, Germany). A theoretical signal model, which describes the signal dephasing phenomena in the presence of deoxyhemoglobin, was used for postprocessing of the acquired images and obtaining a quantitative measurement of cerebral blood oxygen saturation in vivo. With a regionof-interest analysis, a mean cerebral blood oxygen saturation of 58.4% ± 1.8% was obtained in the brain parenchyma from all volunteers. It is in excellent agreement with the known cerebral blood oxygen saturation under normal physiologic conditions in humans. Although further studies are needed to overcome some of the confounding factors affecting the estimates of cerebral blood oxygen saturation, these preliminary results are encouraging and should open a new avenue for the noninvasive investigation of cerebral oxygen metabolism under different pathophysiologic conditions using a magnetic resonance imaging approach.
All of the proposed novel methods have an average global performance within likely acceptable limits (±5% of CT-based reference), and the main difference among the methods was found in the robustness, outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a key factor, this vendor-provided solution currently outperforms most methods. With the performance of the methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the quantification reproducibility in PET imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.