Low‐cycle fatigue tests were conducted on the directionally solidified nickel‐base superalloy DZ125 at 850 °C in the unexposed and exposed specimens for 2, 15, 25 and 50 h in hot corrosion environment. The pre‐exposed specimen exhibited a lower life than unexposed specimens. Fatigue cracks in the unexposed specimens are initiated from defects near the surface, while the cracks of exposed specimens preferentially occur on the surface. Hot corrosion damage in fatigue life was found to be associated with the reduction of the bearing area. A novel life prediction methodology based on continuum damage mechanics was proposed to predict the experimentally observed decrease in low‐cycle fatigue life with increasing prior exposure time.
Vibration, especially at low magnitude and high frequency (LMHF), was demonstrated to be anabolic for bone, but how the LMHF vibration signal is perceived by osteocytes is not fully studied. On the other hand, the mechanotransduction of osteocytes under shear stress has been scientists' primary focus for years. Due to the small strain caused by low-magnitude vibration, whether the previous explanation for shear stress will still work for LMHF vibration is unknown. In this study, a finite element method (FEM) model based on the real geometrical shape of an osteocyte was built to compare the mechanical behaviors of osteocytes under LMHF vibration and shear stress. The bio-response of osteocytes to vibration under different frequencies, including the secretion of soluble factors and the concentration of intracellular calcium, were studied. The regulating effect of the conditioned medium (CM) from vibrated osteocytes on osteoblasts was also studied. The FEM analysis result showed the cell membrane deformation under LMHF vibration was very small (with a peak value of 1.09%) as compared to the deformation caused by shear stress (with a peak value of 6.65%). The F-actin stress fibers of osteocytes were reorganized, especially on the nucleus periphery after LMHF vibration. The vibration at 30 Hz has a promoting effect on osteocytes and the osteogenesis of osteoblasts, whereas vibration at 90 Hz was suppressive. These results lead to a conclusion that the bio-response of osteocytes to LMHF vibration is frequency-dependent and is more related to the cytoskeleton on nuclear periphery rather than the membrane deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.