Epidermal growth factor receptor (EGFR) genotyping is critical for treatment guidelines such as the use of tyrosine kinase inhibitors in lung adenocarcinoma. Conventional identification of EGFR genotype requires biopsy and sequence testing which is invasive and may suffer from the difficulty of accessing tissue samples. Here, we propose a deep learning model to predict EGFR mutation status in lung adenocarcinoma using non-invasive computed tomography (CT).We retrospectively collected data from 844 lung adenocarcinoma patients with pre-operative CT images, EGFR mutation and clinical information from two hospitals. An end-to-end deep learning model was proposed to predict the EGFR mutation status by CT scanning.By training in 14 926 CT images, the deep learning model achieved encouraging predictive performance in both the primary cohort (n=603; AUC 0.85, 95% CI 0.83–0.88) and the independent validation cohort (n=241; AUC 0.81, 95% CI 0.79–0.83), which showed significant improvement over previous studies using hand-crafted CT features or clinical characteristics (p<0.001). The deep learning score demonstrated significant differences in EGFR-mutant and EGFR-wild type tumours (p<0.001).Since CT is routinely used in lung cancer diagnosis, the deep learning model provides a non-invasive and easy-to-use method for EGFR mutation status prediction.
This paper aims at accelerating and compressing deep neural networks to deploy CNN models into small devices like mobile phones or embedded gadgets. We focus on filter level pruning, i.e., the whole filter will be discarded if it is less important. An effective and unified framework, ThiNet (stands for "Thin Net"), is proposed in this paper. We formally establish filter pruning as an optimization problem, and reveal that we need to prune filters based on statistics computed from its next layer, not the current layer, which differentiates ThiNet from existing methods. We also propose "gcos" (Group COnvolution with Shuffling), a more accurate group convolution scheme, to further reduce the pruned model size. Experimental results demonstrate the effectiveness of our method, which has advanced the state-of-the-art. Moreover, we show that the original VGG-16 model can be compressed into a very small model (ThiNet-Tiny) with only 2.66MB model size, but still preserve AlexNet level accuracy. This small model is evaluated on several benchmarks with different vision tasks (e.g., classification, detection, segmentation), and shows excellent generalization ability.
Age estimation performance has been greatly improved by using convolutional neural network. However, existing methods have an inconsistency between the training objectives and evaluation metric, so they may be suboptimal. In addition, these methods always adopt image classification or face recognition models with a large amount of parameters, which bring expensive computation cost and storage overhead. To alleviate these issues, we design a lightweight network architecture and propose a unified framework which can jointly learn age distribution and regress age. The effectiveness of our approach has been demonstrated on apparent and real age estimation tasks. Our method achieves new state-of-the-art results using the single model with 36× fewer parameters and 2.6× reduction in inference time. Moreover, our method can achieve comparable results as the state-of-the-art even though model parameters are further reduced to 0.9M (3.8MB disk storage). We also analyze that Ranking methods are implicitly learning label distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.