We propose an end-to-end, domainindependent neural encoder-aligner-decoder model for selective generation, i.e., the joint task of content selection and surface realization. Our model first encodes a full set of over-determined database event records via an LSTM-based recurrent neural network, then utilizes a novel coarse-to-fine aligner to identify the small subset of salient records to talk about, and finally employs a decoder to generate free-form descriptions of the aligned, selected records. Our model achieves the best selection and generation results reported to-date (with 59% relative improvement in generation) on the benchmark WEATHER-GOV dataset, despite using no specialized features or linguistic resources. Using an improved k-nearest neighbor beam filter helps further. We also perform a series of ablations and visualizations to elucidate the contributions of our key model components. Lastly, we evaluate the generalizability of our model on the ROBOCUP dataset, and get results that are competitive with or better than the state-of-the-art, despite being severely data-starved.
We propose a neural sequence-to-sequence model for direction following, a task that is essential to realizing effective autonomous agents. Our alignment-based encoder-decoder model with long short-term memory recurrent neural networks (LSTM-RNN) translates natural language instructions to action sequences based upon a representation of the observable world state. We introduce a multi-level aligner that empowers our model to focus on sentence "regions" salient to the current world state by using multiple abstractions of the input sentence. In contrast to existing methods, our model uses no specialized linguistic resources (e.g., parsers) or task-specific annotations (e.g., seed lexicons). It is therefore generalizable, yet still achieves the best results reported to-date on a benchmark single-sentence dataset and competitive results for the limited-training multi-sentence setting. We analyze our model through a series of ablations that elucidate the contributions of the primary components of our model.
We propose a neural sequence-to-sequence model for direction following, a task that is essential to realizing effective autonomous agents. Our alignment-based encoder-decoder model with long short-term memory recurrent neural networks (LSTM-RNN) translates natural language instructions to action sequences based upon a representation of the observable world state. We introduce a multi-level aligner that empowers our model to focus on sentence "regions" salient to the current world state by using multiple abstractions of the input sentence. In contrast to existing methods, our model uses no specialized linguistic resources (e.g., parsers) or taskspecific annotations (e.g., seed lexicons). It is therefore generalizable, yet still achieves the best results reported to-date on a benchmark single-sentence dataset and competitive results for the limited-training multi-sentence setting. We analyze our model through a series of ablations that elucidate the contributions of the primary components of our model.
We model coherent conversation continuation via RNN-based dialogue models equipped with a dynamic attention mechanism. Our attention-RNN language model dynamically increases the scope of attention on the history as the conversation continues, as opposed to standard attention (or alignment) models with a fixed input scope in a sequence-to-sequence model. This allows each generated word to be associated with the most relevant words in its corresponding conversation history. We evaluate the model on two popular dialogue datasets, the open-domain MovieTriples dataset and the closed-domain Ubuntu Troubleshoot dataset, and achieve significant improvements over the state-of-the-art and baselines on several metrics, including complementary diversity-based metrics, human evaluation, and qualitative visualizations. We also show that a vanilla RNN with dynamic attention outperforms more complex memory models (e.g., LSTM and GRU) by allowing for flexible, long-distance memory. We promote further coherence via topic modeling-based reranking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.