We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-corrected transmission electron microscopy. We observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.
Low work function materials are critical for energy conversion and electron emission applications. Here, we demonstrate for the first time that an ultralow work function graphene is achieved by combining electrostatic gating with a Cs/O surface coating. A simple device is built from large-area monolayer graphene grown by chemical vapor deposition, transferred onto 20 nm HfO2 on Si, enabling high electric fields capacitive charge accumulation in the graphene. We first observed over 0.7 eV work function change due to electrostatic gating as measured by scanning Kelvin probe force microscopy and confirmed by conductivity measurements. The deposition of Cs/O further reduced the work function, as measured by photoemission in an ultrahigh vacuum environment, which reaches nearly 1 eV, the lowest reported to date for a conductive, nondiamond material.
The efficiency of thermionic energy converters is a strong function of the inter-electrode separation due to space-charge limitations. Here we demonstrate vacuum thermionic energy converters constructed using barium dispenser cathodes and thin film tungsten anodes, separated by size specific alumina microbeads for simple device fabrication and inter-electrode gap control. The current and device efficiency at the maximum power point are strongly dependent on the inter-electrode gap, with a maximum device efficiency of 0.61% observed for a gap on the order of 5 μm. Paths to further reductions in space charge and improved anode work function are outlined with potential for over an order of magnitude improvement in output power and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.