Triple-negative breast cancer (TNBC) represents the worst prognostic subtype of breast cancer and lacks targeted therapeutic drugs. Signal transducer and activator of transcription 3 (STAT3) is overexpressed and constitutively activated in TNBCs and associated with poor patient outcomes. However, no agents targeting STAT3 have been successfully developed and marketed. Selective Estrogen Receptor Modulators (SERMs) have been reported as potential inhibitors of the IL-6/STAT3 signaling pathway.Naphthalene compounds have good pharmacological activity and signi cant anti-cancer activity. In this study, we synthesized a new series of naphthalene derivatives with the general structure of SERM and evaluated their effects on TNBC and STAT3 signals. MethodsA new series of compounds based on the scaffold of SERMs and an amino group were designed and screened based on the structure-activity relationship by MTT assay. The binding activity of SMY002 to STAT3 was predicted and validated by docking and SPR. The STAT3 signaling target and anti-cancer effects of SMY002 were evaluated with three TNBC cell lines and the mice transplanted tumor model. ResultsAmong the compounds, SMY002 displayed the most potent activity, which could directly interact with STAT3 SH2-domain, and strongly inhibit the phosphorylation, dimerization, nuclear distribution, transcriptional activity, and target genes expression of STAT3. Furthermore, SMY002 markedly suppressed migration, invasion, survival, growth, and metastasis of TNBC cells in vitro and in vivo via down-regulating the expression of Cyclin D1 and MMP9. ConclusionsSMY002 can signi cantly inhibit the growth and metastasis of TNBC cells by targeting the STAT3 signal.
Purpose Triple-negative breast cancer (TNBC) represents the worst prognostic subtype of breast cancer and lacks targeted therapeutic drugs. Signal transducer and activator of transcription 3 (STAT3) is overexpressed and constitutively activated in TNBCs and associated with poor patient outcomes. However, no agents targeting STAT3 have been successfully developed and marketed. Selective Estrogen Receptor Modulators (SERMs) have been reported as potential inhibitors of the IL-6/STAT3 signaling pathway. Naphthalene compounds have good pharmacological activity and significant anti-cancer activity. In this study, we synthesized a new series of naphthalene derivatives with the general structure of SERM and evaluated their effects on TNBC and STAT3 signals. Methods A new series of compounds based on the scaffold of SERMs and an amino group were designed and screened based on the structure-activity relationship by MTT assay. The binding activity of SMY002 to STAT3 was predicted and validated by docking and SPR. The STAT3 signaling target and anti-cancer effects of SMY002 were evaluated with three TNBC cell lines and the mice transplanted tumor model. Results Among the compounds, SMY002 displayed the most potent activity, which could directly interact with STAT3 SH2-domain, and strongly inhibit the phosphorylation, dimerization, nuclear distribution, transcriptional activity, and target genes expression of STAT3. Furthermore, SMY002 markedly suppressed migration, invasion, survival, growth, and metastasis of TNBC cells in vitro and in vivo via down-regulating the expression of Cyclin D1 and MMP9. Conclusions SMY002 can significantly inhibit the growth and metastasis of TNBC cells by targeting the STAT3 signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.