In this paper, the existence and uniqueness of the local generalized solution and the local classical solution for the initial boundary value problem of the quasi-linear wave equation with viscous damping are proved. The nonexistence of the global solution for this problem is discussed by an ordinary differential inequality. Finally, an example is given.
This paper presents a new numerical method and analysis for solving second-order elliptic interface problems. The method uses a modified nonconforming rotated Q1 immersed finite element (IFE) space to discretize the state equation required in the variational discretization approach. Optimal order error estimates are derived in L2-norm and broken energy norm. Numerical examples are provided to confirm the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.