Injured articular cartilage has a poor capacity for spontaneous healing. So far, a satisfactory solution to repair the injured cartilage has not been found, but transgenic therapy might be a promising treatment. This study aims to evaluate the potential of transfecting bone morphogenetic protein-7 (BMP-7), a secretory protein, into bone marrow-derived mesenchymal stem cells (BMSCs), in inducing the differentiation of bone marrow stromal cells into chondrocytes in vitro. The phenotypes of the cells were observed by alcian blue staining and H&E staining with an inverted microscope. The glycosaminoglycan (GAG) content of BMSCs transfected with pcDNA3.1-BMP7 or induced by inducing medium was examined after 7, 14, or 21 days of incubation. A standard curve as reference for BMSCs' GAG content was plotted using galacturonic acid. The content of type II collagen in culture medium was detected by ELISA. Our results demonstrated that BMP7-transfected BMSCs or BMSCs incubated with inducing medium possess the ability to differentiate into chondrocytes. BMP7-induced BMSCs secrete type II collagen and GAG. There was no significant difference between BMP7-induced BMSCs in their secreted protein content when compared with the positive control group (TGF-β1 and dexamethasone) (P > 0.05), but there was significant difference in the secreted protein profile when compared with the negative control group (P < 0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.