Copy number variation (CNV) has been found to play an important role in human disease. Next-generation sequencing technology, including whole-genome sequencing (WGS) and whole-exome sequencing (WES), has become a primary strategy for studying the genetic basis of human disease. Several CNV calling tools have recently been developed on the basis of WES data. However, the comparative performance of these tools using real data remains unclear. An objective evaluation study of these tools in practical research situations would be beneficial. Here, we evaluated four well-known WES-based CNV detection tools (XHMM, CoNIFER, ExomeDepth, and CONTRA) using real data generated in house. After evaluation using six metrics, we found that the sensitive and accurate detection of CNVs in WES data remains challenging despite the many algorithms available. Each algorithm has its own strengths and weaknesses. None of the exome-based CNV calling methods performed well in all situations; in particular, compared with CNVs identified from high coverage WGS data from the same samples, all tools suffered from limited power. Our evaluation provides a comprehensive and objective comparison of several well-known detection tools designed for WES data, which will assist researchers in choosing the most suitable tools for their research needs.
deBGA is available at: https://github.com/hitbc/deBGA CONTACT: ydwang@hit.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online.
The alignment of long-read RNA sequencing reads is non-trivial due to high sequencing errors and complicated gene structures. We propose deSALT, a tailored two-pass alignment approach, which constructs graph-based alignment skeletons to infer exons and uses them to generate spliced reference sequences to produce refined alignments. deSALT addresses several difficult technical issues, such as small exons and sequencing errors, which break through bottlenecks of long RNA-seq read alignment. Benchmarks demonstrate that deSALT has a greater ability to produce accurate and homogeneous full-length alignments. deSALT is available at: https://github.com/hitbc/deSALT.
Background
With the rapid development of long-read sequencing technologies, it is possible to reveal the full spectrum of genetic structural variation (SV). However, the expensive cost, finite read length and high sequencing error for long-read data greatly limit the widespread adoption of SV calling. Therefore, it is urgent to establish guidance concerning sequencing coverage, read length, and error rate to maintain high SV yields and to achieve the lowest cost simultaneously.
Results
In this study, we generated a full range of simulated error-prone long-read datasets containing various sequencing settings and comprehensively evaluated the performance of SV calling with state-of-the-art long-read SV detection methods. The benchmark results demonstrate that almost all SV callers perform better when the long-read data reach 20× coverage, 20 kbp average read length, and approximately 10–7.5% or below 1% error rates. Furthermore, high sequencing coverage is the most influential factor in promoting SV calling, while it also directly determines the expensive costs.
Conclusions
Based on the comprehensive evaluation results, we provide important guidelines for selecting long-read sequencing settings for efficient SV calling. We believe these recommended settings of long-read sequencing will have extraordinary guiding significance in cutting-edge genomic studies and clinical practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.