Research on the safety of powerhouse in a hydropower station is mostly concentrated on the vibration of machinery structure and concrete structure within a single unit. However, few studies have been focused on the vibration transmission among units. Due to the integrity of the powerhouse and the interaction, it is necessary to study the vibration transmission mechanism of powerhouse structure among units. In this paper, field structural vibration tests are conducted in an underground powerhouse of a hydropower station on Yalong River. Additionally, the simplified mechanical models are established to explain the transmission mechanism theoretically. Moreover, a complementary finite element (FE) model is built to replicate the testing conditions for comprehensive analysis. The field tests results show that: (1) the transmission of lateral-river vibration is greater than those of longitude-river vibration and vertical vibration; (2) the vibration transmission of the vibrations that is caused by the low frequency tail fluctuation is basically equal to that of the vibrations caused by rotation of hydraulic generator. The transmission mechanism is demonstrated by the simplified mechanical models and is verified by the FE results. This study can provide guidance for further research on the vibration of underground powerhouse structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.