Large-scale longwall mining of shallow coal seams may cause mining-induced fractures that can project completely through to the surface. This could lead to a series of mine safety and environmental issues, further deteriorating the already fragile ecological environment in the Western mining areas in China. Therefore, an accurate and effective understanding of the spatiotemporal evolution law of mining-induced fractures in overlying strata and its relationship to upper aquifers is critical. In this paper, the application of the geophysical-chemical properties of radon in mining engineering is explored as a potential solution to the shortcomings of existing surveying methods. A radioactive measurement method is proposed for the detection of the development of mining-induced fractures from overlying strata to the surface in the Baoshan Coal Mine (BCM). The on-site test indicated that the first weighting step is approximately 60 m, the average periodic weighting step is approximately 20 m, and the influence coverage of the advanced abutment pressure is approximately 30 m. The presented method could be used
OPEN ACCESSEnergies 2014, 7 8484 as an indirect technical support to increase the safety of coal mining by acting as a simple, fast, and reliable method of detecting mining-induced fractures in overlying strata.
Abstract:The borehole television approach is an effective way of detecting mining-induced fractures in overburden strata as it can visualize fractures to facilitate a quantitative analysis of size, quantity, length, and other features. In this article, the borehole television approach is applied on panel 20105 of the Wangjialing Coal Mine in China to investigate the overburden movement and spatiotemporal evolution law of mining-induced fractures from the coal seam to ground surface. The results revealed that the overburden strata experienced the phases of roof caving, generation of fracture, bed separation, dislocations, fracture propagation, surface subsidence, and closing of fractures. The process can be divided into the initiation stage, the active stage, and the degradation stage along the mining direction. For exploited working faces, the caved zone height is 2.9-4.11 times the mining height, and the height of the fractured zone is 19. 35-22.19 times the mining height. The height range of the three parts in the fractured zone is 24-26, 40-45, and 30-35 m. Significant fractures were observed in the bending zone.Step subsidence and cracks, which indicate severe damages, were observed on the ground surface above the goaf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.