The objective of this study was to determine the effect of dietary lycopene supplementation on the growth performance, antioxidant enzyme activity of serum and liver, and gene expressions associated with Kelch-like ech-associated protein-1 (Keap1)/Nuclear Factor E2-related factor 2 (Nrf2) pathway in liver of Arbor Acres broilers. A total of 288 1-day-old male broilers were randomly divided into 4 treatments with 6 replicates and 12 chickens for each replicate. The control group was fed with the basal diet, while the treated groups were fed with the basal diet with 10, 20, and 30 mg/kg lycopene in powder. Feed and water were provided ad libitum for 42 days. Compared with the control group, (a) the average daily gain increased (p = 0.002 vs. p = 0.001) and the feed conversion ratio decreased (p = 0.017 vs. p = 0.023) in groups treated with lycopene in the grower and whole phases, and the average daily feed intake was quadratically affected (p = 0.043) by lycopene in the grower phase; (b) the serum superoxide dismutase content was linearly affected (p = 0.035) by lycopene at 21 days; (c) the serum glutathione peroxidase content, superoxide dismutase content, and total antioxidant capability were higher (p = 0.014, p = 0.003, and p = 0.016, respectively) in the 30 mg/kg lycopene group at 42 days; (d) the liver glutathione peroxidase and superoxide dismutase contents in groups treated with lycopene were higher (p ≤ 0.001 vs. p ≤ 0.001) at 21 days; (e) the liver glutathione peroxidase content was higher (p ≤ 0.001) in the 20 and 30 mg/kg lycopene groups, at 42 days; (f) the mRNA expression levels of Nrf2, superoxide dismutase 2, NAD(P)H quinone dehydrogenase 1, and heme oxygenase 1 genes were higher (21 days: p = 0.042, p = 0.021, p = 0.035, and p = 0.043, respectively; 42 days: p = 0.038, p = 0.025, p = 0.034, and p = 0.043, respectively) in the 20 and 30 mg/kg lycopene groups at 21 and 42 days. The 30 mg/kg lycopene concentration improved the growth performance, antioxidant enzyme activity in serum and liver, and gene expression in the Keap1-Nrf2 signaling pathway of Arbor Acres broilers.
Yizhi (Alpiniae Oxyphyllae, A. oxyphylla) has been widely used as an important traditional Chinese medicinal herb for centuries. Existing studies have shown that A. oxyphylla has numerous benefits in human and animal health. We hypothesized that extract from the stems and leaves of A. oxyphylla (AOE) as a feed additive may have positive effects on animal health and products. Thus, this study was conducted to evaluate the effects of AOE as a feed additive on growth performance, serum biochemical parameters, intestinal morphology, microbial composition, and meat quality in Jiaji ducks. A total of 240 Jiaji ducks of 42 days old (1675.8 ± 44.2 g, male: female ratio = 1:1) were blocked based on body weight and randomly allocated into four dietary treatments with three replicates that each had 20 duck individuals. The dietary treatments included: basal diet, control group (CK); basal diet supplementation with 30 mg/kg (Y1), 80 mg/kg (Y2), and 130 mg/kg (Y3) AOE, respectively, and lasted for 49 days. The results showed that average daily feed intake from day 42 to day 60 was decreased with the increasing level of AOE (P < 0.05). Compared with the CK group, the groups with AOE supplementation decreased serum LDL-C level (P < 0.05), the addition of 30 mg/kg AOE increased total amino acids, essential amino acids, branched-chain amino acids, nonessential amino acids, and umami taste amino acids (P < 0.05), but decreased selenium and zinc concentrations in breast muscle (P < 0.05). In addition, the supplementation of 30 or 130 mg/kg AOE significantly increased jejunal villus height (P < 0.05) and tended to increase the ratio of villus height to crypt depth in the jejunum (P = 0.092) compared to the CK group. Moreover, the addition of 30 mg/kg AOE showed a higher abundance of genus unclassified Bacteroidales and genus unclassified Ruminococcaceae than the CK group (P < 0.05). Therefore, dietary supplementation with 30 mg/kg AOE increased meat nutrition profile and flavor through promoting amino acid contents in breast muscle, as well as maintained intestine integrity and modulated the microbial composition. In conclusion, AOE as an antibiotic alternative displayed potential in maintaining intestinal health and improving meat quality.
Resveratrol is a polyphenolic compound with anti-oxidation effects. The mechanisms underlying the antioxidant effects of resveratrol in duck intestinal epithelial cells remain unclear. The protective effects of resveratrol against oxidative stress induced by H2O2 on immortalized duck intestinal epithelial cells (IDECs) were investigated. IDECs were established by transferring the lentivirus-mediated simian virus 40 large T (SV40T) gene into small intestinal epithelial cells derived from duck embryos. IDECs were morphologically indistinguishable from the primary intestinal epithelial cells. The marker protein cytokeratin 18 (CK18) was also detected in the cultured cells. We found that resveratrol significantly increased the cell viability and activity of catalase and decreased the level of intracellular reactive oxygen species and malondialdehyde, as well as the apoptosis rate induced by H2O2 (p < 0.05). Resveratrol up-regulated the expression of NRF2, p-NRF2, p-AKT, and p-P38 proteins and decreased the levels of cleaved caspase-3 and cleaved caspase-9 and the ratio of Bax to Bcl-2 in H2O2-induced IDECs (p < 0.05). Our findings revealed that resveratrol might alleviate oxidative stress by the PI3K/AKT and P38 MAPK signal pathways and inhibit apoptosis by altering the levels of cleaved caspase-3, cleaved caspase-9, Bax, and Bcl-2 in IDECs exposed to H2O2.
The aims of this study were to test the effects of dietary probiotics and acidifiers on the production performance, colostrum components, serum antioxidant activity and hormone levels, and gene expression in the mammary tissue of lactating sows. Four treatments were administered with six replicates to 24 lactating sows. The control group (GC) received a basal diet, while the experimental groups received a basal diet with 200 mL/d probiotics (GP), 0.5% acidifiers (GA), and 200 mL/d probiotics + 0.5% acidifiers (GM), respectively. Compared with the GC, (1) the average weight of the piglets on the 21st day of lactation in the GM was higher (p < 0.05); (2) the colostrum fat ratio increased significantly (p < 0.05); (3) the malondialdehyde levels in GP and GM were lower (p < 0.05) on the 11th day; (4) on the 1st, 11th, and 21st days, the prolactin in GP and GM increased (p < 0.05); (5) on the 21st day, the relative expression levels of the prolactin receptor and fatty acid synthase were increased (p < 0.05). In summary, the basal diet mixed with 200 mL/d probiotics + 0.5% acidifiers could improve the production performance, colostrum components, serum antioxidant activity, and hormone levels of lactating sows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.