Unmanned aerial vehicles (UAVs) require data-link system to link ground data terminals to the real-time controls of each UAV. Consequently, the ability to predict the health status of a UAV data-link system is vital for safe and efficient operations. The performance of a UAV data-link system is affected by the health status of both the hardware and UAV data-links. This paper proposes a method for predicting the health state of a UAV data-link system based on a Bayesian network fusion of information about potential hardware device failures and link failures. Our model employs the Bayesian network to describe the information and uncertainty associated with a complex multi-level system. To predict the health status of the UAV data-link, we use the health status information about the root node equipment with various life characteristics along with the health status of the links as affected by the bit error rate. In order to test the validity of the model, we tested its prediction of the health of a multi-level solar-powered unmanned aerial vehicle data-link system and the result shows that the method can quantitatively predict the health status of the solar-powered UAV data-link system. The results can provide guidance for improving the reliability of UAV data-link system and lay a foundation for predicting the health status of a UAV data-link system accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.