Photosystem II (PSII) catalyzes light-induced water oxidation through an Si-state cycle, leading to the generation of di-oxygen, protons, and electrons. Pump-probe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture intermediate states of light-driven enzymatic reactions. In this approach, it is crucial to avoid contamination of light into the samples when analyzing a particular reaction intermediate. Here, we describe a method for determining a proper light condition that avoids light contamination to the PSII microcrystals while minimizing the sample consumption in TR-SFX. With the proper illumination conditions determined, we analyzed the S2-state structure of PSII at room temperature, revealing the structural changes during the S1-to-S2 transition at an ambient temperature. By comparing with the previous studies performed at a low temperature or with a different delay time, we reveal the possible channels for water inlet and proton egress, as well as structural changes important for the water-splitting reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.