An integrated device capable of generating large number of multiplexed optical vortex beams with arbitrary topological charge is considered as one of the crucial requirement for driving information photonics forward. Here we report a simple method for simultaneous generation of 100 multiplexed optical vortex beams from a polymer film of size 1 mm2 and thickness of 30 μm. This is achieved through a combination of computer-generated holography, digital hologram printing and photoisomeric polymers. When the fabricated sample is illuminated with a collimated laser beam, a pre-determined vortex array with arbitrary topological charge is emitted. The polymer film easy to synthesize and exhibits a diffraction efficiency of 30% with a retention period longer than 50 days.
Ince–Gaussian beams, defined as a solution to a wave equation in elliptical coordinates, have shown great advantages in applications such as optical communication, optical trapping and optical computation. However, to ingress these applications, a compact and scalable method for generating these beams is required. Here, we present a simple method that satisfies the above requirement, and is capable of generating arbitrary Ince–Gaussian beams and their superposed states through a computer-generated hologram of size 1mm2, fabricated on an azocarbazole polymer film. Other structural beams that can be derived from the Ince–Gaussian beam were also successfully generated by changing the elliptical parameters of the Ince–Gaussian beam. The orthogonality relations between different Ince–Gaussian modes were investigated in order to verify applicability in an optical communication regime. The complete python source code for computing the Ince–Gaussian beams and their holograms are also provided.
An integrated device capable of generating large number of multiplexed optical vortex beams with arbitrary topological charges is considered as one of the crucial requirement for driving information photonics forward. Here we report a simple method for simultaneous generation of 100 multiplexed optical vortex beams from a polymer film of size 1mm2 and thickness of 30µm. This is achieved through a combination of computer generated holography, digital hologram printing and photoisomeric polymers. When the fabricated sample is illuminated with a collimated laser beam, a predetermined vortex array with arbitrary topological charge is emitted. The polymer film easy to synthesise and exhibits good diffraction efficiency and long retention time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.