The diffusion length of charge carriers in the active layer of a perovskite solar cell (PSC) of the structure Glass/PEDOT: PSS/ CH 3 NH 3 PbI 3 /PC60BM/Al is modelled. It is found that the diffusion length depends on the position x in the active layer measured from the PEDOT: PSS interface, Urbach energy and temperature. By varying the voltage in the range from zero to V oc , it is shown that the dependence of diffusion length on the position x in the active layer reduces at higher voltage. The combined influence of applied voltage and temperature on the diffusion length of charge carriers is investigated and it is found that in the low voltage range the diffusion length is temper-ature independent, but it becomes significantly temperature dependent at higher voltages. Also, it is found that the diffusion length decreases as the applied voltage increases and this reduction becomes much more significant at higher voltage and temperatures. The combined influence of applied voltage and Urbach energy on diffusion length of charge carriers reveals that the diffusion length decreases when both the applied voltage and Urbach energy increase. However, the reduction in the diffusion length due to the increase in Urbach energy becomes less significant at higher voltage.
We have developed a model to calculate the temperature of an illuminated perovskite solar cell (PSC) under the forward bias and that of a shaded one under the reverse bias at different ambient conditions. The results show that the dissipated power due to the reverse bias (PRB) should be more than around 6 W to have a higher temperature in the shaded solar cell than that in the illuminated solar cell at the solar irradiance of 1000W/m2, and this result is almost ambient temperature and wind velocity independent. It is also found that the generated thermal power due to the nonradiative recombination (PRec) becomes significant at the open circuit voltage (Voc) condition, leading to illuminated solar cell temperature (Tcr) higher than that at the short circuit current (Jsc) condition by about 12.7 K, 13.3 K, and 13.9 K at the ambient temperatures of 270 K, 300 K, and 330 K, respectively. In addition, the influence of the thickness of the illuminated solar cell on its temperature at the Voc condition is investigated, which reveals that, by increasing the thickness from 100 nm to 300 nm, the solar cell temperature can increase by 20 K.
In this paper, characterisation of exciton generation is carried out in three bulk-heterojunction organic solar cells (BHJ OSCs)—OSC1: an inverted non-fullerene (NF) BHJ OSC; OSC2: a conventional NF BHJ OSC; and OSC3: a conventional fullerene BHJ OSC. It is found that the overlap of the regions of strong constructive interference of incident and reflected electric fields of electromagnetic waves and those of high photon absorption within the active layer depends on the active layer thickness. An optimal thickness of the active layer can thus be obtained at which this overlap is maximum. We have simulated the rates of total exciton generation and position dependent exciton generation within the active layer as a function of the thicknesses of all the layers in all three OSCs and optimised their structures. Based on our simulated results, the inverted NF BHJ OSC1 is found to have better short circuit current density which may lead to better photovoltaic performance than the other two. It is expected that the results of this paper may provide guidance in fabricating highly efficient and cost effective BHJ OSCs.
In this paper, by developing a mathematical model, the temperature of PSCs under different operating conditions has been calculated. It is found that by reducing the density of tail states at the interfaces through some passivation mechanisms, the operating temperature can be decreased significantly at higher applied voltages. The results show that if the density of tail states at the interfaces is reduced by three orders of magnitude through some passivation mechanisms, then the active layer may not undergo any phase change up to an ambient temperature 300 K and it may not degrade up to 320 K. The calculated heat generation at the interfaces at different applied voltages with and without passivation shows reduced heat generation after reducing the density of tail states at the interfaces. It is expected that this study provides a deeper understanding of the influence of interface passivation on the operating temperature of PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.