Applying the optical transfer matrix method and the drift-diffusion equations, the efficient light absorption, exciton generation, and recombination rate in bulk heterojunction (BHJ) organic solar cells (OSCs) with conventional and inverted configurations are studied. Analysing the influence of the electric field component of the electromagnetic radiation propagating through the layered structure of BHJ OSCs and using contour plots of normalized modulus squared of the electric field, the constructive interference points (CIPs) which represent the positions of maximum absorption of photons and hence generation of excitons within the active layer are investigated for both the conventional and inverted OSCs. Also, the influence of the thicknesses of other layers in both the inverted and conventional structures is investigated. It is found that except the thickness of MoO3 in the inverted structure the thicknesses of other layers do not have any significant influence on CIPs. The maximum CIP occurs at an active layer thickness of 190 nm, regardless of the thickness of the second layer, which is MoO3, Ag, or ITO in the inverted structure and PEDOT:PSS, Al, or ITO in the conventional structure. The results of 3D plots of the normalized modulus squared of the electric field reveal that the absorption of photons at the end of the active layer in the inverted structure is higher than that in the conventional structure for all the effective wavelengths and different active layer thicknesses. It is expected that this study provides a deeper understanding of exciton generation within the two structures.
An alternative approach to simulate the power conversion efficiency (η PCE) of bulk heterojunction organic solar cells (BHJ OSCs), as a product of efficiencies of absorption (η abs), dissociation (η dis), and extraction (η ext), is presented. Although η abs and η dis do not directly contribute to the simulation of η PCE , the approach enables us in understanding their roles in optimizing the power conversion efficiency of BHJ OSCs. This method is applied to simulate η PCE as a function of the thickness of active layer for three different BHJ OSC structures, one with a fullerene acceptor and two with two different nonfullerene acceptors. The results are found to be in good agreement with those from the previous simulation and experimental works and are expected to be useful in optimizing the thickness of the active layer.
Using the optical transfer matrix method, we optimized the layered structure of a conventional and an inverted BHJ OSC with the active layer made of blended PTB7-Th:PNDI-T10 by maximizing the optical absorption and, hence, the JSC. The maximum JSC thus obtained from the optimised structure of the inverted OSC was 139 Am−2 and that of the conventional OSC was 135 Am−2. Simulation of the electric field distribution in both inverted and conventional OSCs showed that the formation of a single CIP was obtained in the active layer of thickness 105 nm in both OSCs. As the light incidents from the ITO side, it was found that excitons were generated more closely to ITO electrode, which favors the efficient charge transport and collection at the opposite electrodes in the inverted OSC, which produces higher JSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.