Malware is a serious threat that has caused catastrophic disasters in recent decades. To deal with this issue, various approaches have been proposed. One effective and widely used method is signature‐based detection. However, there is a substantial problem in detecting new instances; therefore, this method is solely useful for second malware attacks. In addition, owing to the rapid proliferation of malware and the significant human effort requirement to extract signatures, this approach is an inadequate solution; thus, an intelligent malware detection system is required. One of the major phases of such a system is feature extraction, used to construct a learning model. This paper introduces an approach to generate a group of semantic signatures, represented by a set of learning models, in which various features indicate the different programming styles of the execution files. A set of these signatures is obtained by mining frequent sub‐graphs, common code sub‐structures employed for malware writing, in a group of control flow graphs. The experimental results depict an improved F‐measure rate in comparison with the classic graph‐based approach. Copyright © 2014 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.