Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress.
The photoluminescence behavior of CdS quantum dots in initial growth stage was studied in connection with an annealing process. Compared to the as-synthesized CdS quantum dots (quantum efficiency ≅ 1%), the heat-treated sample showed enhanced luminescence properties (quantum efficiency ≅ 29%) with a narrow band-edge emission. The simple annealing process diminished the accumulated defect states within the nanoparticles and thereby reduced the nonradiative recombination, which was confirmed by diffraction, absorption, and time-resolved photoluminescence. Consequently, the highly luminescent and defect-free nanoparticles were obtained by a facile and straightforward process.
Gold nanoparticles of $100 nm in diameter were incorporated into TiO 2 nanoparticles for dye-sensitized solar cells (DSSCs). At the optimum Au/TiO 2 mass ratio of 0.05, the power-conversion efficiency of the DSSC improved to 3.3% from a value of 2.7% without Au, and this improvement was mainly attributed to the photocurrent density. The Au nanoparticles embedded in the nanoparticulate-TiO 2 film strongly absorbed light due to the localized surface-plasmon resonance, and thereby promoted light absorption of the dye. In the DSSCs, the 100 nm-diameter Au nanoparticles generate field enhancement by surface-plasmon resonance rather than prolonged optical paths by light scattering. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.