We evaluated the long-term outcome of vagus nerve stimulation (VNS) in 28 children with refractory epilepsy. Of these 28 children, 15 (53.6%) showed a >50% reduction in seizure frequency and 9 (32.1%) had a >75% reduction. When we compared seizure reduction rates according to seizure types (generalized vs. partial) and etiologies (symptomatic vs. cryptogenic), we found no significant differences. In addition, there was no correlation between the length of the stimulation period and treatment effect. The seizure reduction rate, however, tended to be inversely related to the seizure duration before VNS implantation and age at the time of VNS therapy. VNS also improved quality of life in this group of patients, including improved memory in 9 (32.1%), improved mood in 12 (42.9%), improved behavior in 11 (39.3%), improved altertness in 12 (42.9%), improved achievement in 6 (21.4%), and improved verbal skills in 8 (28.6%). Adverse events included hoarseness in 7 patients, dyspnea at sleep in 2 patients, and wound infection in 1 patient, but all were transient and successfully managed by careful follow-up and adjustment of parameters. These results indicate that VNS is a safe and effective alternative therapy for pediatric refractory epilepsy, without significant adverse events.
Malformations of cortical development (MCD) are neurological conditions displaying focal disruption of cortical architecture and cellular organization arising during embryogenesis, largely from somatic mosaic mutations, and causing intractable epilepsy. Identifying the genetic causes of MCD has been a challenge, as mutations remain at low allelic fractions in brain tissue resected to treat condition-related epilepsy. Here, we report a genetic landscape from 283 brain resections, identifying 69 mutated genes through intensive profiling of somatic mutations, combining whole-exome and targeted-amplicon sequencing with functional validation including in utero electroporation of mice and single-nucleus RNA sequencing. Genotype-phenotype correlation analysis elucidated specific MCD gene sets associating distinct pathophysiological and clinical phenotypes. The unique single-cell level spatiotemporal expression patterns of mutated genes in control and patient brains implicate critical roles in excitatory neurogenic pools during brain development, and in promoting neuronal hyperexcitability after birth.
Background and Objectives:TheSLC35A2gene, located at chromosome Xp11.23, encodes for a uridine diphosphate (UDP)-galactose transporter. We describe clinical, genetic, neuroimaging, EEG and histopathological findings and assess possible predictors of postoperative seizure and cognitive outcome in 47 patients with refractory epilepsy and brain somaticSLC35A2gene variants.Methods:This is a retrospective multicenter study where we performed a descriptive analysis and classical hypothesis testing. We included the variables of interest significantly associated with the outcomes in the generalized linear models.Results:Two main phenotypes were associated with brain somaticSLC35A2variants: 1) early epileptic encephalopathy (EE, 39 patients) with epileptic spasms as the predominant seizure type and moderate to severe intellectual disability, and 2) drug-resistant focal epilepsy (DR-FE, 8 patients) associated with normal/borderline cognitive function and specific neuropsychological deficits. Brain MRI was abnormal in all patients with EE and in 50% of those with DR-FE. Histopathology review identified mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE) in 44/47 patients and was inconclusive in three. The 47 patients harbored 42 distinct mosaicSLC35A2variants, including 14 (33.3%) missense, 13 (30.9%) frameshift, 10 (23.8%) nonsense, four (9.5%) in-frame deletions/duplications, and one (2.4%) splicing variant. Variant allele frequencies (VAF) ranged from 1.4 to 52.6% (mean VAF: 17.3±13.5).At last follow-up (35.5± 21.5 months), 30 patients (63.8%) were in Engel class I, of which 26 (55.3%) were in class IA. Cognitive performances remained unchanged in most patients after surgery. Regression analyses showed that the probability of achieving both Engel class IA and class I outcomes, adjusted by age at seizure onset, was lower when the duration of epilepsy increased and higher when postoperative EEG was normal or improved. Lower brain VAF was associated with improved postoperative cognitive outcome in the analysis of associations, but this finding was not confirmed in regression analyses.Discussion:Brain somaticSLC35A2gene variants are associated with two main clinical phenotypes, EE and DR-FE, and a histopathological diagnosis of MOGHE. Additional studies will be needed to delineate any possible correlation between specific genetic variants, mutational load in the epileptogenic tissue and surgical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.