Diffuse intrinsic pontine glioma (DIPG) is an incurable tumor that arises in the brainstem of children. To date there is not a single approved drug to effectively treat these tumors and thus novel therapies are desperately needed. Recent studies suggest that a significant fraction of these tumors contain alterations in cell cycle regulatory genes including amplification of the D-type cyclins and CDK4/6, and less commonly, loss of Ink4a-ARF leading to aberrant cell proliferation. In this study, we evaluated the therapeutic approach of targeting the cyclin-CDK-Retinoblastoma (Rb) pathway in a genetically engineered PDGF-B-driven brainstem glioma (BSG) mouse model. We found that PD-0332991 (PD), a CDK4/6 inhibitor, induces cell-cycle arrest in our PDGF-B; Ink4a-ARF deficient model both in vitro and in vivo. By contrast, the PDGF-B; p53 deficient model was mostly resistant to treatment with PD. We noted that a 7-day treatment course with PD significantly prolonged survival by 12% in the PDGF-B; Ink4a-ARF deficient BSG model. Furthermore, a single dose of 10 Gy radiation therapy (RT) followed by 7 days of treatment with PD increased the survival by 19% in comparison to RT alone. These findings provide the rationale for evaluating PD in children with Ink4a-ARF deficient gliomas.
Cancer clinics currently use high-dose stereotactic body radiation therapy as a curative treatment for several kinds of cancers. However, the contribution of vascular endothelial cells to tumor response to radiation remains controversial. Using dual-recombinase technology, we generated primary sarcomas in mice with targeted genetic mutations specifically in tumor cells or endothelial cells. We selectively mutated the proapoptotic gene Bax or the DNA damage–response gene Atm to genetically manipulate the radiosensitivity of endothelial cells in primary soft tissue sarcomas. Bax deletion from endothelial cells did not affect radiation-induced cell death in tumor endothelial cells or sarcoma response to radiation therapy. Although Atm deletion increased endothelial cell death after radiation therapy, deletion of Atm from endothelial cells failed to enhance sarcoma eradication. In contrast, deletion of Atm from tumor cells increased sarcoma eradication by radiation therapy. These results demonstrate that tumor cells, rather than endothelial cells, are critical targets that regulate sarcoma eradication by radiation therapy. Treatment with BEZ235, a small-molecule protein kinase inhibitor, radiosensitized primary sarcomas more than hearts. These results suggest that inhibiting ATM kinase during radiation therapy is a viable strategy for radiosensitization of some tumors.
Hypoxia is a major cause of radiation resistance, which may predispose to local recurrence after radiation therapy (RT). While hypoxia increases tumor cell survival after RT because there is less oxygen to oxidize damaged DNA, whether signaling pathways triggered by hypoxia contribute to radiation resistance is poorly understood. For example, intratumoral hypoxia can increase hypoxia inducible factor 1 alpha (HIF-1α), which may regulate pathways that contribute to radiation sensitization or radiation resistance. To clarify the role of HIF-1α in regulating tumor response to radiation therapy, we generated a novel genetically engineered mouse model of soft tissue sarcoma with an intact or deleted HIF-1α. Deletion of HIF-1α sensitized primary sarcomas to RT in vivo. Moreover, cell lines derived from primary sarcomas lacking HIF-1α, or in which HIF-1α was knocked down, had decreased clonogenic survival in vitro, demonstrating that HIF-1α can promote radiation resistance in a cell autonomous manner. In HIF-1α intact and deleted sarcoma cells, radiation-induced reactive oxygen species (ROS), DNA damage repair, and activation of autophagy were similar. However, sarcoma cells lacking HIF-1α had impaired mitochondrial biogenesis and metabolic response after radiation which might contribute to radiation resistance. These results show that HIF-1α promotes radiation resistance in a cell autonomous manner.
Purpose To develop a mouse model of cardiac injury following partial-heart irradiation (PHI) and test whether DE-microCT and 4D-microCT can be used to assess cardiac injury after PHI to complement myocardial perfusion imaging using microSPECT. Methods and Materials To study cardiac injury from tangent field irradiation in mice, we used a small-field biological irradiator to deliver a single dose of 12 Gy x-rays to approximately one-third of the left ventricle (LV) of Tie2Cre; p53FL/+ and Tie2Cre; p53FL/− mice, where one or both alleles of p53 are deleted in endothelial cells. Four and 8 weeks after irradiation, mice were injected with gold and iodinated nanoparticle-based contrast agents, and imaged with DE-microCT and 4D-microCT to evaluate myocardial vascular permeability and cardiac function, respectively. Additionally, the same mice were imaged with microSPECT to assess myocardial perfusion. Results After PHI with tangent fields, DE-microCT scans showed a time-dependent increase in accumulation of gold nanoparticles (AuNp) in the myocardium of Tie2Cre; p53FL/− mice. In Tie2Cre; p53FL/− mice, extravasation of AuNp was observed within the irradiated LV, whereas in the myocardium of Tie2Cre; p53FL/+ mice, AuNp were restricted to blood vessels. In addition, data from DE-microCT and microSPECT showed a linear correlation (R2=0.97) between the fraction of the LV that accumulated AuNp and the fraction of LV with a perfusion defect. Furthermore, 4D-microCT scans demonstrated that PHI caused Tie2Cre; p53FL/− mice to develop a markedly decreased ejection fraction, and higher end-diastolic and end-systolic volumes, which were associated with compensatory cardiac hypertrophy of the heart that was not irradiated. Conclusions Our results show that DE-microCT and 4D-microCT with nanoparticle-based contrast agents are novel imaging approaches complementary to microSPECT to non-invasively assess the change in myocardial vascular permeability and cardiac function of mice that develop myocardial injury after PHI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.