Sitagliptin significantly improved glycaemic control and was well tolerated in patients with type 2 diabetes mellitus who had inadequate glycaemic control on exercise and diet.
Aim: To assess the efficacy and safety of a 24-week treatment with sitagliptin, a highly selective once-daily oral dipeptidyl peptidase-4 (DPP-4) inhibitor, in patients with type 2 diabetes who had inadequate glycaemic control [glycosylated haemoglobin (HbA 1c ) !7.5% and 10.5%] while on glimepiride alone or in combination with metformin. Methods: After a screening, diet/exercise run-in and drug wash-off period, a glimepiride AE metformin dose titration/ stabilization period and a 2-week, single-blind placebo run-in, 441 patients (of ages 18-75 years) were randomized to receive the addition of sitagliptin 100 mg once daily or placebo in a 1 : 1 ratio for 24 weeks. Of these patients, 212 were on glimepiride (!4 mg/day) monotherapy and 229 were on glimepiride (!4 mg/day) plus metformin (!1500 mg/day) combination therapy. Patients exceeding pre-specified glycaemic thresholds during the double-blind treatment period were provided open-label rescue therapy (pioglitazone) until study end. The primary efficacy analysis evaluated the change in HbA 1c from baseline to Week 24. Secondary efficacy endpoints included fasting plasma glucose (FPG), 2-h post-meal glucose and lipid measurements. Results: Mean baseline HbA 1c was 8.34% in the sitagliptin and placebo groups. After 24 weeks, sitagliptin reduced HbA 1c by 0.74% (p < 0.001) relative to placebo. In the subset of patients on glimepiride plus metformin, sitagliptin reduced HbA 1c by 0.89% relative to placebo, compared with a reduction of 0.57% in the subset of patients on glimepiride alone. The addition of sitagliptin reduced FPG by 20.1 mg/dl (p < 0.001) and increased homeostasis model assessment-b, a marker of b-cell function, by 12% (p < 0.05) relative to placebo. In patients who underwent a meal tolerance test (n ¼ 134), sitagliptin decreased 2-h post-prandial glucose (PPG) by 36.1 mg/dl (p < 0.001) relative to placebo. The addition of sitagliptin was generally well tolerated, although there was a higher incidence of overall (60 vs. 47%) and drug-related adverse experiences (AEs) (15 vs. 7%) in the sitagliptin group than in the placebo group. This was largely because of a higher incidence of hypoglycaemia AEs (12 vs. 2%, respectively) in the sitagliptin group compared with the placebo group. Body weight modestly increased with sitagliptin relative to placebo (þ0.8 vs. À0.4 kg; p < 0.001). Conclusions: Sitagliptin 100 mg once daily significantly improved glycaemic control and b-cell function in patients with type 2 diabetes who had inadequate glycaemic control with glimepiride or glimepiride plus metformin therapy. The addition of sitagliptin was generally well tolerated, with a modest increase in hypoglycaemia and body weight, consistent with glimepiride therapy and the observed degree of glycaemic improvement.
Leptin treatment was associated with marked improvement in dyslipidemia. Hepatic insulin sensitivity improved and lipolysis decreased. Visceral fat decreased with no exacerbation of peripheral lipoatrophy. Results from this pilot study suggest that leptin warrants further study in patients with HIV-associated lipoatrophy.
BackgroundProgressive resistance exercise training (PRT) improves physical functioning in patients with HIV infection. Creatine supplementation can augment the benefits derived from training in athletes and improve muscle function in patients with muscle wasting. The objective of this study was to determine whether creatine supplementation augments the effects of PRT on muscle strength, energetics, and body composition in HIV-infected patients.Methodology/Principal FindingsThis is a randomized, double blind, placebo-controlled, clinical research center-based, outpatient study in San Francisco. 40 HIV–positive men (20 creatine, 20 placebo) enrolled in a 14-week study. Subjects were randomly assigned to receive creatine monohydrate or placebo for 14 weeks. Treatment began with a loading dose of 20 g/day or an equivalent number of placebo capsules for 5 days, followed by maintenance dosing of 4.8 g/day or placebo. Beginning at week 2 and continuing to week 14, all subjects underwent thrice-weekly supervised resistance exercise while continuing on the assigned study medication (with repeated 6-week cycles of loading and maintenance). The main outcome measurements included muscle strength (one repetition maximum), energetics (31P magnetic resonance spectroscopy), composition and size (magnetic resonance imaging), as well as total body composition (dual-energy X-ray absorptiometry). Thirty-three subjects completed the study (17 creatine, 16 placebo). Strength increased in all 8 muscle groups studied following PRT, but this increase was not augmented by creatine supplementation (average increase 44 vs. 42%, difference 2%, 95% CI −9.5% to 13.9%) in creatine and placebo, respectively). There were no differences between groups in changes in muscle energetics. Thigh muscle cross-sectional area increased following resistance exercise, with no additive effect of creatine. Lean body mass (LBM) increased to a significantly greater extent with creatine.Conclusions / SignificanceResistance exercise improved muscle size, strength and function in HIV-infected men. While creatine supplementation produced a greater increase in LBM, it did not augment the robust increase in strength derived from PRT.Trial RegistrationClinicalTrials.gov NCT00484627
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.