Currently, traumatic brain injury (TBI) is detected by medical imaging; however, medical imaging requires expensive capital equipment, is time-and resource-intensive, and is poor at predicting patient prognosis. To date, direct measurement of elevated protease activity has yet to be utilized in order to detect TBI. In this work, we engineered an activitybased nanosensor for TBI (TBI-ABN) that responds to increased protease activity initiated after brain injury. We establish that a calcium-sensitive protease, calpain-1, is active in the injured brain hours within injury. We then optimize the molecular weight of a nanoscale polymeric carrier to infiltrate into injured brain tissue with minimal renal filtration. A calpain-1 substrate that generates fluorescent signal upon cleavage was attached to this nanoscale polymeric carrier to generate an engineered TBI-ABN. When applied intravenously to a mouse model of TBI, our engineered sensor is observed to locally activate in the injured brain tissue. This TBI-ABN is the first demonstration of a sensor that responds to protease activity to detect TBI.
Combining the sustainable culture of billions of human cells and the bioprinting of wholly cellular bioinks offers a pathway toward organ-scale tissue engineering. Traditional 2D culture methods are not inherently scalable due to cost, space, and handling constraints. Here, the suspension culture of human induced pluripotent stem cell-derived aggregates (hAs) is optimized using an automated 250 mL stirred tank bioreactor system. Cell yield, aggregate morphology, and pluripotency marker expression are maintained over three serial passages in two distinct cell lines. Furthermore, it is demonstrated that the same optimized parameters can be scaled to an automated 1 L stirred tank bioreactor system. This 4-day culture results in a 16.6-to 20.4-fold expansion of cells, generating approximately 4 billion cells per vessel, while maintaining >94% expression of pluripotency markers. The pluripotent aggregates can be subsequently differentiated into derivatives of the three germ layers, including cardiac aggregates, and vascular, cortical and intestinal organoids. Finally, the aggregates are compacted into a wholly cellular bioink for rheological characterization and 3D bioprinting. The printed hAs are subsequently differentiated into neuronal and vascular tissue. This work demonstrates an optimized suspension culture-to-3D bioprinting pipeline that enables a sustainable approach to billion cell-scale organ engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.