MicroRNAs are key regulators of transcriptome plasticity and have been implicated with the pathogenesis of brain diseases. Here, we employed massive parallel sequencing and provide, at an unprecedented depth, the complete and quantitative miRNAome of the mouse hippocampus, the prime target of neurodegenerative diseases such as Alzheimer's disease (AD). Using integrative genetics, we identify miR-34c as a negative constraint of memory consolidation and show that miR-34c levels are elevated in the hippocampus of AD patients and corresponding mouse models. In line with this, targeting miR-34 seed rescues learning ability in these mouse models. Our data suggest that miR-34c could be a marker for the onset of cognitive disturbances linked to AD and indicate that targeting miR34c could be a suitable therapy.
Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example, the expression of an aversive behaviour upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinction are only beginning to emerge. Here, we show that fear extinction initiates upregulation of hippocampal insulingrowth factor 2 (Igf2) and downregulation of insulingrowth factor binding protein 7 (Igfbp7). In line with this observation, we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2-dependent manner. Furthermore, we identify one cellular substrate of altered IGF2 signalling during fear extinction. To this end, we show that fear extinctioninduced IGF2/IGFBP7 signalling promotes the survival of 17-19-day-old newborn hippocampal neurons. In conclusion, our data suggest that therapeutic strategies that enhance IGF2 signalling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory.
Alzheimer's disease is a devastating neurodegenerative disease eventually leading to dementia. An effective treatment does not yet exist. Here we show that oral application of the compound anle138b restores hippocampal synaptic and transcriptional plasticity as well as spatial memory in a mouse model for Alzheimer's disease, when given orally before or after the onset of pathology. At the mechanistic level, we provide evidence that anle138b blocks the activity of conducting Aβ pores without changing the membrane embedded Aβ‐oligomer structure. In conclusion, our data suggest that anle138b is a novel and promising compound to treat AD‐related pathology that should be investigated further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.