Currently there are many applications for the use of composites reinforced with fiberglass mat and fabrics with polyester resin: automotive, aerospace, construction of wind turbines blades, sanitary ware, furniture, etc. The structures made of composites have a complex geometry, can be simultaneously subjected to tensile–compression, shear, bending and torsion. In this paper we analyzed the mechanical properties of a polyester composite material reinforced with glass fiber (denoted GFRP) of which were carried out two types of samples: The former contains four layers of plain fabric (GFRP-RT500) and the second type contains three layers of chopped strand mat (GFRP-MAT450). The samples were subjected to tensile, compression and tensile–tensile cyclic loading. The results highlight the differences between the two types of GFRP in terms of initial elastic modulus, post yield stiffness and viscoelastic behavior under cyclic loading. Thus, it was observed that the value of the modulus of elasticity and the value of ultimate tensile stress are approximately twice higher in the case of GFRP-RT500 than for the composite reinforced with short fibers type GFRP-MAT450. The tensile–tensile cyclic test highlights that the short glass fiber-reinforced composite broke after the first stress cycle, compared to the fabric-reinforced composite in which rupture occurred after 15 stress cycles. The elasticity modulus of GFRP-RT500 decreased by 13% for the applied loading with the speed of 1 mm/min and by 15% for a loading speed of 20 mm/min.
The paper deals with the mechanical behaviour of natural fibre composites subjected to tensile test and dynamic mechanical analysis (DMA). Three types of natural fibre composites were prepared and tested: wood particle reinforced composites with six different sizes of grains (WPC); hemp mat reinforced composites (HMP) and flax reinforced composite with mixed wood particles (FWPC). The tensile test performed on universal testing machine LS100 Lloyd’s Instrument highlights the elastic properties of the samples, as longitudinal elasticity modulus; tensile rupture; strain at break; and stiffness. The large dispersion of stress–strain curves was noticed in the case of HMP and FWPC by comparison to WPC samples which present high homogeneity of elastic–plastic behaviour. The DMA test emphasized the rheological behaviour of natural fibre composites in terms of energy dissipation of a material under cyclic load. Cole–Cole plots revealed the connection between stored and loss heat energy for studied samples. The mixture of wood particles with a polyester matrix leads to relative homogeneity of composite in comparison with FWPC and HMP samples which is visible from the shape of Cole–Cole curves. The random fibres from the hemp mat structure lead to a heterogeneous nature of composite structure. The elastic and viscous responses of samples depend on the interface between fibres and matrix.
Paper explores the influence of the infill density (%), as a process parameter in additive manufacturing (3D printing), upon the mechanical (tensile, impact) and thermo-physical properties of PLA samples. The results indicated degradation of both tensile strengths and moduli with decrease of samples� relative density from 100% to 25% with 49.9% and 42.0%, respectively. Similar behaviour holds on impact strength values that degrades with 56.0% for the samples printed using a 25% infill density. The Young�s modulus variation with relative density values was approximated using a 3rd order polynomial function, in accordance with the expression for closed-cell thick edge rhombus cellular structures. All PLA samples revealed small difference on their coefficients of linear thermal expansion, irrespective of their infill densities, with a decrease of 6.34% in the lowest relative density value specimens, indicating enhanced stability within selected temperature range. Glass transition temperatures were approximately located at 65�C whereas cold-crystallization around 80�C, thus unaffected by selected process parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.