Background The COVID-19 outbreak holds public health concerns. The stay-at-home increases sedentary behavior, with unintended adverse outcomes. Since organized recreation and sports facilities were closed, we aimed to study how the crisis of closure affected exercise habits and weight gain among the trainee population in Israel. We examined differences in weight gain among individuals with different PA activities and assessed their ability to adapt to digital media as an alternative training structure. Methods A cross-sectional survey consisted of a multiple-choice questionnaire obtained using a web-based survey application. Trainees (1202) who exercised steadily anonymously answered the questionnaire sent by their coaches regarding their activity and weight gain during lockdown times. Results Results confirmed that 70% of Israelis trained less than their usual routine, 60% used digital media for training, 55% gained weight. Half of the respondents gained more than 2 kg, with an average increase of 1.2 kg. However, those who exhibited a higher physical activity level gained less weight. Using digital media for training was associated with higher physical activity levels. The aged population was less likely to use digital media. Conclusions Since increased sedentary behavior could increase the risk for potential worsening of health conditions, health agencies should look for strategies, including digital remote media training to promote physical activity and subsequently, preventing the increased burden of future comorbidities worsening by a sedentary lifestyle. Approval: by the Helsinki ethics committee of Sheba Medical Center (6504–19-SMC).
IntroductionExercise is considered a valuable nonpharmacological intervention modality in cardiac rehabilitation (CR) programs in patients with ischemic heart disease. The effect of aerobic interval exercise combined with alternating sets of resistance training (super-circuit training, SCT) on cardiac patients' with reduced left ventricular function, post-myocardial infarction (MI) has not been thoroughly investigated.Aim of studyto improve cardiac function with a novel method of combined aerobic-resistance circuit training in a randomized control trial by way of comparing the effectiveness of continuous aerobic training (CAT) to SCT on mechanical cardiac function. Secondary to compare their effect on aerobic fitness, manual strength, and quality of life in men post MI. Finally, to evaluate the safety and feasibility of SCT.Methods29 men post-MI participants were randomly assigned to either 12-weeks of CAT (n = 15) or SCT (n = 14). Both groups, CAT and SCT exercised at 60%-70% and 75–85% of their heart rate reserve, respectively. The SCT group also engaged in intermittently combined resistance training. Primary outcome measure was echocardiography. Secondary outcome measures were aerobic fitness, strength, and quality of life (QoL). The effectiveness of the two training programs was examined via paired t-tests and Cohen's d effect size (ES).ResultsPost-training, only the SCT group presented significant changes in echocardiography (a reduction in E/e' and an increase in ejection fraction, P<0.05). Similarly, only the SCT group presented significant changes in aerobic fitness (an increase in maximal metabolic equivalent, P<0.05). In addition, SCT improvement in the physical component of QoL was greater than this observed in the CAT group. In both training programs, no adverse events were observed.ConclusionMen post-MI stand to benefit from both CAT and SCT. However, in comparison to CAT, as assessed by echocardiography, SCT may yield greater benefits to the left ventricle mechanical function as well as to the patient's aerobic fitness and physical QoL. Moreover, the SCT program was found to be feasible as well as safe.
BackgroundThe mechanisms whereby aerobic training reduces the occurrence of sudden cardiac death in humans are not clear. We test the hypothesis that exercise-induced increased resistance to ventricular tachycardia and fibrillation (VT/VF) involve an intrinsic remodeling in healthy hearts.Methods and ResultsThirty rats were divided into a sedentary (CTRL, n = 16) and two exercise groups: short- (4 weeks, ST, n = 7) and long-term (8 weeks, LT, n = 7) trained groups. Following the exercise program hearts were isolated and studied in a Langendorff perfusion system. An S1–S2 pacing protocol was applied at the right ventricle to determine inducibility of VT/VF. Fast Fourier transforms were applied on ECG time-series. In-vivo measurements showed training-induced increase in aerobic capacity, heart-to-body weight ratio and a 50% low-to-high frequency ratio reduction in the heart rate variability (p<0.05). In isolated hearts the probability for VF decreased from 26.1±14.4 in CTRL to 13.9±14.1 and 6.7±8.5% in the ST and LT, respectively (p<0.05). Duration of VF also decreased from 19.0±5.7 in CTRL to 8.8±7.1 and 6.0±5.8 sec in ST and LT respectively (p<0.05). Moreover, the pacing current required for VF induction increased following exercise (2.9±1.7 vs. 5.4±2.1 and 8.5±0.9 mA, respectively; p<0.05). Frequency analysis of ECG revealed an exercise-induced VF transition from a narrow single peak spectrum at 17 Hz in CTRL to a broader range of peaks ranging between 8.8 and 22.5 Hz in the LT group (p<0.05).ConclusionExercise in rats leads to reduced VF propensity associated with an intrinsic cardiac remodeling related to a broader spectral range and faster frequency components in the ECG.
The cardiac system in children with CP responded to the submaximal testing.
BackgroundModerate exercise training has been shown to decrease sudden cardiac death post myocardial infarction. However, the effects of intensive exercise are still controversial.Methods and ResultsFourteen myocardial‐infarcted rats were divided into sedentary (n=8) and intensive training groups (n=6) and 18 sham control rats to sedentary (n=10) and intensive training groups (n=8). Heart rate variability was obtained at weeks 1 and 8. The inducibility of ventricular tachycardia/fibrillation was assessed in a Langendorff system. Fast Fourier transforms were applied on the recorded ventricular tachycardia/fibrillations. Training reduces low to high frequency ratio of heart rate variability at week 8 compared with that at week 1 (P<0.05). In isolated hearts, the probability for ventricular tachycardia/fibrillation was decreased from 4.5±0.8% in sedentary controls to 1.56±0.2% in intensive training controls (P<0.05) and from 13.5±2.1% in the sedentary group to 5.4±1.2% in the intensive training group (P<0.01). Moreover, the pacing current required for ventricular fibrillation induction in the trained groups was increased following exercise (P<0.05). Fast Fourier transform analysis of ECG findings revealed an exercise‐induced ventricular fibrillation transition from a narrow, single‐peak spectrum at 17 Hz in sedentary controls to a broader range of peaks ranging from 13 to 22 Hz in the intensive training controls.ConclusionsIntensive exercise in infarcted rats leads to reduced ventricular fibrillation propensity and is associated with normalization of refractoriness and intrinsic spatiotemporal electrical variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.