SummaryCheckpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.
The mechanism of action of natural killer (NK) cells in type 1 diabetes is still unknown. Here we show that the activating receptor NKp46 recognizes mouse and human ligands on pancreatic beta cells. NK cells appeared in the pancreas when insulitis progressed to type 1 diabetes, and NKp46 engagement by beta cells led to degranulation of NK cells. NKp46-deficient mice had less development of type 1 diabetes induced by injection of a low dose of streptozotocin. Injection of soluble NKp46 proteins into nonobese diabetic mice during the early phase of insulitis and the prediabetic stage prevented the development of type 1 diabetes. Our findings demonstrate that NKp46 is essential for the development of type 1 diabetes and highlight potential new therapeutic modalities for this disease.
During early pregnancy, decidual innate lymphoid cells (dILCs) interact with surrounding maternal cells and invading fetal extravillous trophoblasts (EVT). Here, using mass cytometry, we characterise five main dILC subsets: decidual NK cells (dNK)1-3, ILC3s and proliferating NK cells. Following stimulation, dNK2 and dNK3 produce more chemokines than dNK1 including XCL1 which can act on both maternal dendritic cells and fetal EVT. In contrast, dNK1 express receptors including Killer-cell Immunoglobulin-like Receptors (KIR), indicating they respond to HLA class I ligands on EVT. Decidual NK have distinctive organisation and content of granules compared with peripheral blood NK cells. Acquisition of KIR correlates with higher granzyme B levels and increased chemokine production in response to KIR activation, suggesting a link between increased granule content and dNK1 responsiveness. Our analysis shows that dILCs are unique and provide specialised functions dedicated to achieving placental development and successful reproduction.
The in vitro elimination of virus-infected and tumor cells by NK cells is regulated by a balance between signals conveyed via specific inhibitory and activating receptors. Whether NK cells and specifically the NK-activating receptor NKp46 (NCR1 in mice) are directly involved in tumor eradication in vivo is still largely unknown. Since the NKp46/NCR1 tumor ligands have not been identified yet, we use a screening technique to identify functional ligands for NKp46/NCR1 which is based on a cell reporter assay and discover a NCR1 ligand in the PD1.6 lymphoma line. To study whether NKp46/NCR1 is important for the eradication of PD1.6 lymphoma in vivo, we used the Ncr1 knockout Ncr1gfp/gfp mice generated by our group. Strikingly, all Ncr1 knockout mice developed growing PD1.6 tumors, whereas initial tumor growth was observed in the wild-type mice and tumors were completely rejected as time progressed. The growth of other lymphoma cell lines such as B10 and EL4 was equivalent between the Ncr1 knockout and wild-type mice. Finally, we show that PD1.6 lymphoma cells are less killed both in vitro and in vivo in the absence of NKp46/NCR1. Our results therefore reveal a crucial role for NKp46/NCR1 in the in vivo eradication of some lymphoma cells.
NK cells employ a variety of activating receptors to kill virally infected and tumor cells. Prominent among these receptors are the natural cytotoxicity receptors (NCRs) (NKp30, NKp44, and NKp46), of which only NKp46 has a mouse ortholog (NCR1). The tumor ligand(s) of NKp46/NCR1 is still unknown, but it was shown that the human NKp46 and the mouse NCR1 are involved in tumor eradication both in vitro and in vivo. Whether any of the NK activating receptors is involved in the prevention of tumor metastasis is unknown. To address this question, we studied the activity of the NK cell receptor NKp46/NCR1 in two spontaneous metastasis models, the B16F10.9 melanoma (B16) and the Lewis lung carcinoma (D122) in the NCR1 knockout mouse that was generated by our group, in various in vitro and in vivo assays. We demonstrated that all B16 and D122 tumors, including those generated in vivo, express an unknown ligand(s) for NKp46/NCR1. We have characterized the properties of the NKp46/NCR1 ligand(s) and demonstrated that NKp46/NCR1 is directly involved in the killing of B16 and D122 cells. Importantly, we showed in vivo that NKp46/NCR1 plays an important role in controlling B16 and D122 metastasis. Thus, to our knowledge, in this study we provide the first evidence for the direct involvement of a specific NK killer receptor in preventing tumor metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.