We study the gravitational-wave (GW) signatures of clouds of ultralight bosons around black holes (BHs) in binary inspirals. These clouds, which are formed via superradiance instabilities for rapidly rotating BHs, produce distinct effects in the population of BH masses and spins, and a continuous monochromatic GW signal. We show that the presence of a binary companion greatly enriches the dynamical evolution of the system, most remarkably through the existence of resonant transitions between the growing and decaying modes of the cloud (analogous to Rabi oscillations in atomic physics). These resonances have rich phenomenological implications for current and future GW detectors. Notably, the amplitude of the GW signal from the clouds may be reduced, and in many cases terminated, much before the binary merger. The presence of a boson cloud can also be revealed in the GW signal from the binary through the imprint of finite-size effects, such as spin-induced multipole moments and tidal Love numbers. The time dependence of the cloud's energy density during the resonance leads to a sharp feature, or at least attenuation, in the contribution from the finite-size terms to the waveforms. The observation of these effects would constrain the properties of putative ultralight bosons through precision GW data, offering new probes of physics beyond the Standard Model. arXiv:1804.03208v2 [gr-qc]
We study the imprints of new ultralight particles on the gravitational-wave signals emitted by binary black holes. Superradiant instabilities may create large clouds of scalar or vector fields around rotating black holes. The presence of a binary companion then induces transitions between different states of the cloud, which become resonantly enhanced when the orbital frequency matches the energy gap between the states. We find that the time dependence of the orbit significantly impacts the cloud's dynamics during a transition. Following an analogy with particle colliders, we introduce an S-matrix formalism to describe the evolution through multiple resonances. We show that the state of the cloud, as it approaches the merger, carries vital information about its spectrum via time-dependent finite-size effects. Moreover, due to the transfer of energy and angular momentum between the cloud and the orbit, a dephasing of the gravitational-wave signal can occur which is correlated with the positions of the resonances. Notably, for intermediate and extreme mass ratio inspirals, long-lived floating orbits are possible, as well as kicks that yield large eccentricities. Observing these effects, through the precise reconstruction of waveforms, has the potential to unravel the internal structure of the boson clouds, ultimately probing the masses and spins of new particles.
We compute the quasi-bound state spectra of ultralight scalar and vector fields around rotating black holes. These spectra are determined by the gravitational fine structure constant α, which is the ratio of the size of the black hole to the Compton wavelength of the field. When α is small, the energy eigenvalues and instability rates can be computed analytically. Since the solutions vary rapidly near the black hole horizon, ordinary perturbative approximations fail and we must use matched asymptotic expansions to determine the spectra. Our analytical treatment relies on the separability of the equations of motion, and is therefore only applicable to the scalar field and the electric modes of the vector field. However, for slowly-rotating black holes, the equations for the magnetic modes can be written in a separable form, which we exploit to derive their energy eigenvalues and conjecture an analytic form for their instability rates. To check our conjecture, and to extend all results to large values of α, we solve for the spectra numerically. We explain how to accurately and efficiently compute these spectra, without relying on separability. This allows us to obtain reliable results for any α 0.001 and black holes of arbitrary spin. Our results provide an essential input to the phenomenology of boson clouds around black holes, especially when these are part of binary systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.