ABSTRACT. Concentration, conductivity, temperature, and flow logs from sixteen brine-filled shafts in northern Germany have shown that the brines in all former potash salt mines exhibit a very sharp stratification into lower Mg-rich brine, an upper layer of Na-rich brine, and groundwater at the top. Laboratory experiments have shown that, at the MgC12-brine/NaCl-brine boundary, both solutions become oversaturated with regard to NaC1, due to diffusion processes. NaC1 therefore crystallizes from the solutions and forms a salt plug in the boundary region, which considerably reduces further diffusion. It is concluded that the observed effects would also take place in shafts. The backfilling material helps to nucleate the halite crystals and provides a structure on which they might be supported. The results of these experiments show that the density boundaries in the brine bodies act as barriers against transport of matter while the formation of a halite plug growing independently at the MgClz/NaCl-brine interface acts as an additional barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.