BackroundFunctional and cosmetic defects in the maxillofacial region are caused by various ailments and these defects are addressed according to their need. Simplicity of procedure, intact facial function and esthetic outcome with the least possible donor site morbidity are the minimum requirements of a good reconstruction. Oro-mandibular reconstruction, although a challenge for the head and neck reconstructive surgeon, is now reliable and highly successful with excellent long-term functional and aesthetic outcomes with the use of autogenous bone grafts. Reconstruction of trauma- or mandibular oncologic defects with bony free flaps is considered the gold standard. However the the optimal reconstruction of mandibular defects is still controversial in regards to reconstructive options which include the donor site selection and the timing of surgery. The purpose of this study was to determine the outcome of different osseous reconstruction options using autogenous bone grafts for mandibular reconstructions.MethodsThis study was carried out on 178 patients with mandibular bone defects. They were reconstructed with autogenous bone grafts from different donor sites. At post operative visits they were evaluated for functional and cosmetic results.ResultsThe success rate found in this study was around 90%. Only 7.6% of the cases showed poor results regarding facial contours and mouth opening. All other patients were satisfied with their cosmesis and mouth opening at the recipient sites was in the normal range during last follow-up visits. Donor sites were primarily closed in all cases and there was no hypertrophic scar.ConclusionBased on this study, autogenous bone grafts are a reliable treatment modality for the reconstruction of mandibular bone defects with predictable aesthetic and functional outcomes. As the free vascularized fibular flap has the least resorption and failure rate, it should be the first choice for most cases of mandiblular reconstruction.
BackgroundRecent evidence suggests a subset of cells within a tumor with "stem-like" characteristics. These cells are able to transplant tumors in immunodeficient hosts. Distinct from non-malignant stem cells, cancer stem cells (CSC) show low proliferative rates, high self-renewing capacity, propensity to differentiate into actively proliferating tumor cells, and resistance to chemotherapy or radiation. They are often characterized by elevated expression of stem cell surface markers, in particular CD133, and sets of differentially expressed stem cell-associated genes. CSC are usually rare in clinical specimens and hardly amenable to functional studies and gene expression profiling. In this study, a panel of heterogenous melanoma cell lines was screened for typical CSC features.MethodsNine heterogeneous metastatic melanoma cell lines including D10 and WM115 were studied. Cell lines were phenotyped using flow cytometry and clonogenic assays were performed by limiting dilution analysis on magnetically sorted cells. Spheroidal growth was investigated in pretreated flasks. Gene expression profiles were assessed by using real-time rt-PCR and DNA microarrays. Magnetically sorted tumor cells were subcutaneously injected into the flanks of immunodeficient mice. Comparative immunohistochemistry was performed on xenografts and primary human melanoma sections.ResultsD10 cells expressed CD133 with a significantly higher clonogenic capacity as compared to CD133- cells. Na8, D10, and HBL cells formed spheroids on poly-HEMA-coated flasks. D10, Me39, RE, and WM115 cells expressed at least 2 of the 3 regulatory core transcription factors SOX2, NANOG, and OCT4 involved in the maintenance of stemness in mesenchymal stem cells. Gene expression profiling on CD133+ and CD133- D10 cells revealed 68 up- and 47 downregulated genes (+/-1.3 fold). Two genes, MGP and PROM1 (CD133), were outstandingly upregulated. CD133+ D10 cells formed tumors in NSG mice contrary to CD133- cells and CD133 expression was detected in xenografts and primary human melanoma sections using immunohistochemistry.ConclusionsEstablished melanoma cell lines exhibit, to variable extents, the typical features of CSCs. The tumorigenic cell line D10, expressing CD133 and growing in spheroids and might qualify as a potential model of melanoma CSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.