Previous studies in the auditory cortex of Mongolian gerbils on discrimination learning of the direction of frequency-modulated tones (FMs) revealed that long-term memory formation involves activation of the dopaminergic system, activity of the protein kinase mammalian target of rapamycin (mTOR), and protein synthesis. This led to the hypothesis that the dopaminergic system might modulate memory formation via regulation of mTOR, which is implicated in translational control. Here, we report that the D1/D5 dopamine receptor agonist SKF-38393 substantially improved gerbils’ FM discrimination learning when administered systemically or locally into the auditory cortex shortly before, shortly after, or 1 day before conditioning. Although acquisition performance during initial training was normal, the discrimination of FMs was enhanced during retraining performed hours or days after agonist injection compared with vehicle-injected controls. The D1/D5 receptor antagonist SCH-23390, the mTOR inhibitor rapamycin, and the protein synthesis blocker anisomycin suppressed this effect. By immunohistochemistry, D1 dopamine receptors were identified in the gerbil auditory cortex predominantly in the infragranular layers. Together, these findings suggest that in the gerbil auditory cortex dopaminergic inputs regulate mTOR-mediated, protein synthesis-dependent mechanisms, thus controlling for hours or days the consolidation of memory required for the discrimination of complex auditory stimuli.
New memories initially persist in a labile state and require protein synthesis-dependent processes of consolidation for long-term manifestation. Using differential conditioning to linearly frequency-modulated tones (FMs) we have recently shown that post-training injections of protein synthesis inhibitors into the auditory cortex of Mongolian gerbils interfere with long-term memory for a number of days. Here, we have used rapamycin as a pharmacological tool to elucidate signalling pathways that control the synthesis of proteins required for persistent memory storage. In mammalian cells, inhibition of target of rapamycin (TOR)-mediated pathways was shown to block the translation of distinct classes of mRNAs. Bilateral infusions of rapamycin into the gerbil auditory cortex shortly after FM discrimination training did not impair the maintenance of the newly acquired memory trace for 24 h, but caused profound retention deficits at 48 h after injection. Control experiments showed that the amnesic action is rapamycin-dependent, confined to the context of memory formation, and suppressed by the antagonist FK506. These data indicate that, in the mammalian brain, activation of rapamycin-sensitive signalling pathways contributes to long-term consolidation of a cerebral cortex-dependent form of memory. Moreover, the finding that rapamycin-induced amnesia parallels only late effects of conventional protein synthesis inhibitors on FM discrimination memory implies that at least two different protein synthesis-dependent processes control memory formation. Both are activated during or shortly after learning. Whereas one process is required for the initial maintenance of memory for about one day the second one is involved in the regulation of its long-lasting persistence in conditioning to FMs.
Differential conditioning of Mongolian gerbils to linearly frequency-modulated tones (FM) has recently received experimental attention. In the study of the role of cerebral protein synthesis for FM discrimination memory, gerbils received post-training bilateral injections of anisomycin into the auditory cortex under light halothane anesthesia. Compared with saline-treated controls, anisomycin-treated gerbils showed a discrimination decrement during the subsequent three days of training. They markedly improved their performance within training sessions, but started each session at low levels. When repeatedly trained gerbils received post-session injections of anisomycin, discrimination performance during subsequent sessions was similar to the pre-injection performance, indicating that retention, retrieval, reconsolidation, and expression of the established reaction were not affected. However, the improvement of a partially established discrimination reaction was impaired after this treatment. Intracortical injections of emetine confirmed this finding. Neither drug affected FM discrimination learning when given several days before the initial training. Our results suggest that protein-synthesis inhibitors applied to the auditory cortex of gerbils during the post-acquisition phase interfered with learning and memory-related aspects of FM processing. The resulting deficit was evident for a number of post-injection training days. This effect was probably due to impaired consolidation, i.e., processes required for long-term stabilization or retrieval of the memory trace while leaving short-term memory intact.
In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall.
IntroductionRecently, the induction of transcription factor-encoding immediate-early genes such as c-fos was observed in distinct brain regions of rats trained to acquire a footshock-motivated brightness discrimination in a Y-maze. The functional relevance of inducible transcription factors for learning and memory formation is, however, not clear. To address this question in the present study, we have used a synthetic antisense phosphorothioate oligodeoxynucleotide to suppress in vivo the expression of c-fos in rat brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.