Accurate impression-making is considered a vital step in the fabrication of fixed dental prostheses. There is a paucity of studies that compare the casts generated by various impression materials and techniques that are commonly used for the fabrication of provisional and definitive fixed prostheses. The aim of this study is to compare the accuracy of casts obtained using conventional impression and digital impression techniques. Thirty impressions were made for the typodont model (10 impressions each of polyvinyl siloxane, alginate, and alginate alternative materials). Ten digital models were printed from the same model using a TRIOS-3 3Shape intraoral scanner. Accuracy was assessed by measuring four dimensions (horizontal anteroposterior straight, horizontal anteroposterior curved, horizontal cross-arch, and vertical). A one-way ANOVA and Tukey’s test (α = 0.05) were used to analyze data. A statistically significant difference in the four dimensions of the stone casts and digital models was observed among the four groups (exception: between alginate alternative and 2-step putty–light body impression in the horizontal anteroposterior straight, horizontal anteroposterior curved, and horizontal cross-arch dimensions; between alginate and alginate alternative in the horizontal anteroposterior curved dimension; between alginate and 2-step putty–light body impression in the horizontal anteroposterior curved dimension; and between alginate alternative and digital in the vertical dimension). Polyvinyl siloxane had the highest accuracy compared to casts obtained from other impression materials and digital impressions.
The aim of this study was to evaluate the accuracy of master casts generated by conventional (putty and light body consistencies polyvinyl siloxane and alginate) and digital impression techniques on a typodont master model with full-arch-prepared abutment teeth. The null hypotheses tested were as follows: (1) no statistically significant differences in accuracy between casts made by the two impression modalities and the typodont master model at each of the four locations (horizontal straight, horizontal curved, horizontal cross arch, and vertical), and (2) no statistically significant differences in dimensions measured at each of the four locations between the casts generated using the conventional and digital impression techniques. For the conventional technique, 10 impressions each were made for the typodont model using polyvinyl siloxane and alginate impression materials, and the casts were poured. For the digital technique, the typodont model was scanned 10 times using a TRIOS-3 3Shape intraoral scanner, and the casts were printed. The measurements for the horizontal (anteroposterior and cross arch) and vertical dimensions were made using a stereomicroscope and the accuracy of fabricated casts was expressed as the percentage of deviation from the typodont master model’s values. A one-way ANOVA and Tukey’s test (p < 0.05) were used to analyze the data. In the current study, the only measurement that did not exceed 0.5% in dimensional change was with the stone casts produced by both the 3M ESPE PVS and Kromopan alginate impression materials at the HAPC dimension. The casts generated by impressions made using the 3M ESPE PVS impression material were the most accurate, whereas the casts generated by making digital impressions using the TRIOS-3 3Shape intraoral scanner were the least accurate among the three tested groups. The greatest number of distortions above 0.5% (at all dimensional locations) was produced by the digital models printed using the ASIGA 3D printer.
Although monolithic high-translucency zirconia had significantly lower BFS than conventional zirconia tested in this study, they still have sufficient strength for clinical use.
Aim:The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of TurkomCera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan). Materials and methods:Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. Results:The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2. significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups. Conclusion:In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks.Clinical significance: The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.