Mesenchymal stem cells (MSCs) are being exploited in regenerative medicine due to their tri‐lineage differentiation and immunomodulation activity. Currently, there are two major challenges when directing the differentiation of MSCs for therapeutic applications. First, chemical and growth factor strategies to direct osteogenesis in vivo lack specificity for targeted delivery with desired effects. Second, MSC differentiation by gene therapy is difficult as transfection with existing approaches is clinically impractical (viral transfection) or have low efficacy (lipid‐mediated transfection). These challenges can be avoided by directly delivering nonvirally derived recombinant protein transcription factors with the glycosaminoglycan‐binding enhanced transduction (GET) delivery system (P21 and 8R peptides). We used the osteogenic master regulator, RUNX2 as a programming factor due to its stage‐specific role in osteochondral differentiation pathways. Herein, we engineered GET‐fusion proteins and compared sequential osteogenic changes in MSCs, induced by exposure to GET fusion proteins or conventional stimulation methods (dexamethasone and Bone morphogenetic protein 2). By assessing loss of stem cell‐surface markers, upregulation of osteogenic genes and matrix mineralization, we demonstrate that GET‐RUNX2 efficiently transduces MSCs and triggers osteogenesis by enhancing target gene expression directly. The high transduction efficiency of GET system holds great promise for stem cell therapies by allowing reproducible transcriptional control in stem cells, potentially bypassing problems observed with high‐concentration growth‐factor or pleiotropic steroid therapies. Stem Cells Translational Medicine 2017;6:2146–2159
The goal for regenerative medicine is to restore functional biological tissue by controlling and augmenting cellular behaviour. Either Transcription (TFs) or growth factors (GFs) can be presented to cells in spatio-temporal gradients for programming cell fate and gene expression. Here, we have created a sustained and controlled release system for GET (Glycosaminoglycan-enhanced transducing)-tagged proteins using S/O/W PLGA microparticle fabrication. We demonstrated that PLGA and its acidic degradants inhibit GET-mediated transduction, which can be overcome by using pH-activated l-Histidine. l-Histidine inhibits the electrostatic interaction of GET/PLGA and allows enhanced intracellular transduction. GET could provide a powerful tool to program cell behaviour either in gradients or with sustained delivery. We believe that our controlled release systems will allow application of GET for tissue regeneration directly by TF cellular programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.