Enhancement of mammography images considers as powerful methods in categorization of breast normal tissues and pathologies. The digital image software gives chance to improve the mammographs and increasing their illustration value. The image processing methods in this paper were using contrast improvement, noise lessening, texture scrutiny and portioning algorithm. The mammography images kept in high quality to conserve the quality. Those methods aim to augment and hone the image intensity and eliminate noise from the images. The assortment factor of augmentation depends on the backdrop tissues and type of the breast lesions; hence, some lesions gave better improvement than the rest due to their density. The computation speed examined used correspondence and matching ratio. The results were 96.3 ± 8.5 (p>0.05). The results showed that the breast lesions could be improved by using the proposed image improvement and segmentation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.